//------------------------------------------------------------------------------
//
// tb_modular_multiplier_256.v
// -----------------------------------------------------------------------------
// Testbench for modular multi-word multiplier.
//
// Authors: Pavel Shatov
//
// Copyright (c) 2015-2016, NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
`timescale 1ns / 1ps
//------------------------------------------------------------------------------
module tb_modular_multiplier_256;
//
// Test Vectors
//
localparam [255:0] N = 256'hffffffff00000001000000000000000000000000ffffffffffffffffffffffff;
localparam [255:0] X_1 = 256'h6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296;
localparam [255:0] Y_1 = 256'h4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5;
localparam [255:0] P_1 = 256'h823cd15f6dd3c71933565064513a6b2bd183e554c6a08622f713ebbbface98be;
localparam [255:0] X_2 = 256'h29d05c193da77b710e86323538b77e1b11f904fea42998be16bd8d744ece7ad0;
localparam [255:0] Y_2 = 256'hb01cbd1c01e58065711814b583f061e9d431cca994cea1313449bf97c840ae07;
localparam [255:0] P_2 = 256'h76b2571d1d009ab0e7d1cc086c7d3648f08755b2e2585e780d11f053b06fb6ec;
localparam [255:0] X_3 = 256'h8101ece47464a6ead70cf69a6e2bd3d88691a3262d22cba4f7635eaff26680a8;
localparam [255:0] Y_3 = 256'hd8a12ba61d599235f67d9cb4d58f1783d3ca43e78f0a5abaa624079936c0c3a9;
localparam [255:0] P_3 = 256'h944fea6a4fac7ae475a6bb211db4bbd394bd9b3ee9a038f6c17125a00b3a5375;
localparam [255:0] X_4 = 256'h7214bc9647160bbd39ff2f80533f5dc6ddd70ddf86bb815661e805d5d4e6f27c;
localparam [255:0] Y_4 = 256'h8b81e3e977597110c7cf2633435b2294b72642987defd3d4007e1cfc5df84541;
localparam [255:0] P_4 = 256'h78d3e33c81ab9c652679363c76df004ea6f9a9e3a242a0fb71a4e8fdf41ab519;
//
// Core Parameters
//
localparam WORD_COUNTER_WIDTH = 3;
localparam OPERAND_NUM_WORDS = 8;
//
// Clock (100 MHz)
//
reg clk = 1'b0;
always #5 clk = ~clk;
//
// Inputs, Outputs
//
reg rst_n;
reg ena;
wire rdy;
//
// Buffers (X, Y, N, P)
//
wire [WORD_COUNTER_WIDTH-1:0] core_x_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_y_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_n_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_p_addr;
wire core_p_wren;
wire [ 31:0] core_x_data;
wire [ 31:0] core_y_data;
wire [ 31:0] core_n_data;
wire [ 31:0] core_p_data;
reg [WORD_COUNTER_WIDTH-1:0] tb_xyn_addr;
reg [WORD_COUNTER_WIDTH-1:0] tb_p_addr;
reg tb_xyn_wren;
reg [ 31:0] tb_x_data;
reg [ 31:0] tb_y_data;
reg [ 31:0] tb_n_data;
wire [ 31:0] tb_p_data;
bram_1rw_1ro_readfirst #
(
.MEM_WIDTH (32),
.MEM_ADDR_BITS (WORD_COUNTER_WIDTH)
)
bram_x
(
.clk (clk),
.a_addr (tb_xyn_addr),
.a_wr (tb_xyn_wren),
.a_in (tb_x_data),
.a_out (),
.b_addr (core_x_addr),
.b_out (core_x_data)
);
bram_1rw_1ro_readfirst #
(
.MEM_WIDTH (32),
.MEM_ADDR_BITS (WORD_COUNTER_WIDTH)
)
bram_y
(
.clk (clk),
.a_addr (tb_xyn_addr),
.a_wr (tb_xyn_wren),
.a_in (tb_y_data),
.a_out (),
.b_addr (core_y_addr),
.b_out (core_y_data)
);
bram_1rw_1ro_readfirst #
(
.MEM_WIDTH (32),
.MEM_ADDR_BITS (WORD_COUNTER_WIDTH)
)
bram_n
(
.clk (clk),
.a_addr (tb_xyn_addr),
.a_wr (tb_xyn_wren),
.a_in (tb_n_data),
.a_out (),
.b_addr (core_n_addr),
.b_out (core_n_data)
);
bram_1rw_1ro_readfirst #
(
.MEM_WIDTH (32),
.MEM_ADDR_BITS (WORD_COUNTER_WIDTH)
)
bram_s
(
.clk (clk),
.a_addr (core_p_addr),
.a_wr (core_p_wren),
.a_in (core_p_data),
.a_out (),
.b_addr (tb_p_addr),
.b_out (tb_p_data)
);
//
// UUT
//
modular_multiplier_256 uut
(
.clk (clk),
.rst_n (rst_n),
.ena (ena),
.rdy (rdy),
.a_addr (core_x_addr),
.b_addr (core_y_addr),
.n_addr (core_n_addr),
.p_addr (core_p_addr),
.p_wren (core_p_wren),
.a_din (core_x_data),
.b_din (core_y_data),
.n_din (core_n_data),
.p_dout (core_p_data)
);
//
// Testbench Routine
//
reg ok = 1;
initial begin
/* initialize control inputs */
rst_n = 0;
ena = 0;
tb_xyn_wren = 0;
/* wait for some time */
#200;
/* de-assert reset */
rst_n = 1;
/* wait for some time */
#100;
/* run tests */
test_modular_multiplier(X_1, Y_1, N, P_1);
test_modular_multiplier(X_2, Y_2, N, P_2);
test_modular_multiplier(X_3, Y_3, N, P_3);
test_modular_multiplier(X_4, Y_4, N, P_4);
/* print result */
if (ok) $display("tb_modular_multiplier_256: SUCCESS");
else $display("tb_modular_multiplier_256: FAILURE");
//
//$finish;
//
end
//
// Test Task
//
reg [255:0] p;
reg p_ok;
integer w;
reg [511:0] pp_full;
reg [255:0] pp_ref;
task test_modular_multiplier;
input [255:0] x;
input [255:0] y;
input [255:0] n;
input [255:0] pp;
reg [255:0] x_shreg;
reg [255:0] y_shreg;
reg [255:0] n_shreg;
reg [255:0] p_shreg;
begin
/* start filling memories */
tb_xyn_wren = 1;
/* initialize shift registers */
x_shreg = x;
y_shreg = y;
n_shreg = n;
/* write all the words */
for (w=0; w<OPERAND_NUM_WORDS; w=w+1) begin
/* set addresses */
tb_xyn_addr = w[WORD_COUNTER_WIDTH-1:0];
/* set data words */
tb_x_data = x_shreg[31:0];
tb_y_data = y_shreg[31:0];
tb_n_data = n_shreg[31:0];
/* shift inputs */
x_shreg = {{32{1'bX}}, x_shreg[255:32]};
y_shreg = {{32{1'bX}}, y_shreg[255:32]};
n_shreg = {{32{1'bX}}, n_shreg[255:32]};
/* wait for 1 clock tick */
#10;
end
/* wipe addresses */
tb_xyn_addr = {WORD_COUNTER_WIDTH{1'bX}};
/* wipe data words */
tb_x_data = {32{1'bX}};
tb_y_data = {32{1'bX}};
tb_n_data = {32{1'bX}};
/* stop filling memories */
tb_xyn_wren = 0;
/* calculate reference value */
pp_full = {{256{1'b0}}, x} * {{256{1'b0}}, y};
pp_ref = pp_full % {{256{1'b0}}, n};
/* compare reference value against hard-coded one */
if (pp_ref != pp) begin
$display("ERROR: pp_ref != pp");
$finish;
end
/* start operation */
ena = 1;
/* clear flag */
#10 ena = 0;
/* wait for operation to complete */
while (!rdy) #10;
/* read result */
for (w=0; w<OPERAND_NUM_WORDS; w=w+1) begin
/* set address */
tb_p_addr = w[WORD_COUNTER_WIDTH-1:0];
/* wait for 1 clock tick */
#10;
/* store data word */
p_shreg = {tb_p_data, p_shreg[255:32]};
end
/* compare */
p_ok = (p_shreg == pp);
/* display results */
$display("test_modular_multiplier_256(): %s", p_ok ? "OK" : "ERROR");
/* update flag */
ok = ok && p_ok;
end
endtask
endmodule
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------