//------------------------------------------------------------------------------
//
// tb_curve_multiplier_256.v
// -----------------------------------------------------------------------------
// Testbench for 256-bit curve point scalar multiplier.
//
// Authors: Pavel Shatov
//
// Copyright (c) 2016, NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
`timescale 1ns / 1ps
//------------------------------------------------------------------------------
module tb_curve_multiplier_256;
//
// Test Vectors
//
/* Q = d * G */
localparam [255:0] K_1 = 256'h70a12c2db16845ed56ff68cfc21a472b3f04d7d6851bf6349f2d7d5b3452b38a;
localparam [255:0] PX_1 = 256'h8101ece47464a6ead70cf69a6e2bd3d88691a3262d22cba4f7635eaff26680a8;
localparam [255:0] PY_1 = 256'hd8a12ba61d599235f67d9cb4d58f1783d3ca43e78f0a5abaa624079936c0c3a9;
/* R = k * G */
localparam [255:0] K_2 = 256'h580ec00d856434334cef3f71ecaed4965b12ae37fa47055b1965c7b134ee45d0;
localparam [255:0] PX_2 = 256'h7214bc9647160bbd39ff2f80533f5dc6ddd70ddf86bb815661e805d5d4e6f27c;
localparam [255:0] PY_2 = 256'h8b81e3e977597110c7cf2633435b2294b72642987defd3d4007e1cfc5df84541;
/* O = n * G */
localparam [255:0] K_3 = 256'hffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551;
localparam [255:0] PX_3 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
localparam [255:0] PY_3 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
/* H = 2 * G */
localparam [255:0] K_4 = 256'h0000000000000000000000000000000000000000000000000000000000000002;
localparam [255:0] PX_4 = 256'h7cf27b188d034f7e8a52380304b51ac3c08969e277f21b35a60b48fc47669978;
localparam [255:0] PY_4 = 256'h07775510db8ed040293d9ac69f7430dbba7dade63ce982299e04b79d227873d1;
/* G = (n + 1) * G */
localparam [255:0] K_5 = 256'hffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 + 'd1;
localparam [255:0] PX_5 = 256'h6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296;
localparam [255:0] PY_5 = 256'h4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5;
/* H = (n + 2) * G */
localparam [255:0] K_6 = 256'hffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 + 'd2;
localparam [255:0] PX_6 = 256'h7cf27b188d034f7e8a52380304b51ac3c08969e277f21b35a60b48fc47669978;
localparam [255:0] PY_6 = 256'h07775510db8ed040293d9ac69f7430dbba7dade63ce982299e04b79d227873d1;
//
// Core Parameters
//
localparam WORD_COUNTER_WIDTH = 3;
localparam OPERAND_NUM_WORDS = 8;
//
// Clock (100 MHz)
//
reg clk = 1'b0;
always #5 clk = ~clk;
//
// Inputs, Outputs
//
reg rst_n;
reg ena;
wire rdy;
//
// Buffers (K, PX, PY)
//
wire [WORD_COUNTER_WIDTH-1:0] core_k_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_px_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_py_addr;
wire core_px_wren;
wire core_py_wren;
wire [ 32-1:0] core_k_data;
wire [ 32-1:0] core_px_data;
wire [ 32-1:0] core_py_data;
reg [WORD_COUNTER_WIDTH-1:0] tb_k_addr;
reg [WORD_COUNTER_WIDTH-1:0] tb_pxy_addr;
reg tb_k_wren;
reg [ 31:0] tb_k_data;
wire [ 31:0] tb_px_data;
wire [ 31:0] tb_py_data;
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_k
( .clk(clk),
.a_addr(tb_k_addr), .a_wr(tb_k_wren), .a_in(tb_k_data), .a_out(),
.b_addr(core_k_addr), .b_out(core_k_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_px
( .clk(clk),
.a_addr(core_px_addr), .a_wr(core_px_wren), .a_in(core_px_data), .a_out(),
.b_addr(tb_pxy_addr), .b_out(tb_px_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_py
( .clk(clk),
.a_addr(core_py_addr), .a_wr(core_py_wren), .a_in(core_py_data), .a_out(),
.b_addr(tb_pxy_addr), .b_out(tb_py_data)
);
//
// UUT
//
curve_mul_256 uut
(
.clk (clk),
.rst_n (rst_n),
.ena (ena),
.rdy (rdy),
.k_addr (core_k_addr),
.rx_addr (core_px_addr),
.ry_addr (core_py_addr),
.rx_wren (core_px_wren),
.ry_wren (core_py_wren),
.k_din (core_k_data),
.rx_dout (core_px_data),
.ry_dout (core_py_data)
);
//
// Testbench Routine
//
reg ok = 1;
initial begin
/* initialize control inputs */
rst_n = 0;
ena = 0;
/* wait for some time */
#200;
/* de-assert reset */
rst_n = 1;
/* wait for some time */
#100;
/* run tests */
//test_curve_multiplier(K_1, PX_1, PY_1);
//test_curve_multiplier(K_2, PX_2, PY_2);
//test_curve_multiplier(K_3, PX_3, PY_3);
//test_curve_multiplier(K_4, PX_4, PY_4);
//test_curve_multiplier(K_5, PX_5, PY_5);
test_curve_multiplier(K_6, PX_6, PY_6);
/* print result */
if (ok) $display("tb_curve_multiplier_256: SUCCESS");
else $display("tb_curve_multiplier_256: FAILURE");
//
//$finish;
//
end
//
// Test Task
//
reg p_ok;
integer w;
task test_curve_multiplier;
input [255:0] k;
input [255:0] px;
input [255:0] py;
reg [255:0] k_shreg;
reg [255:0] px_shreg;
reg [255:0] py_shreg;
begin
/* start filling memories */
tb_k_wren = 1;
/* initialize shift registers */
k_shreg = k;
/* write all the words */
for (w=0; w<OPERAND_NUM_WORDS; w=w+1) begin
/* set addresses */
tb_k_addr = w[WORD_COUNTER_WIDTH-1:0];
/* set data words */
tb_k_data = k_shreg[31:0];
/* shift inputs */
k_shreg = {{32{1'bX}}, k_shreg[255:32]};
/* wait for 1 clock tick */
#10;
end
/* wipe addresses */
tb_k_addr = {WORD_COUNTER_WIDTH{1'bX}};
/* wipe data words */
tb_k_data = {32{1'bX}};
/* stop filling memories */
tb_k_wren = 0;
/* start operation */
ena = 1;
/* clear flag */
#10 ena = 0;
/* wait for operation to complete */
while (!rdy) #10;
/* read result */
for (w=0; w<OPERAND_NUM_WORDS; w=w+1) begin
/* set address */
tb_pxy_addr = w[WORD_COUNTER_WIDTH-1:0];
/* wait for 1 clock tick */
#10;
/* store data word */
px_shreg = {tb_px_data, px_shreg[255:32]};
py_shreg = {tb_py_data, py_shreg[255:32]};
end
/* compare */
p_ok = (px_shreg == px) &&
(py_shreg == py);
/* display results */
$display("test_curve_multiplier(): %s", p_ok ? "OK" : "ERROR");
/* update global flag */
ok = ok && p_ok;
end
endtask
endmodule
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------