1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
/*
* rpc_server.c
* ------------
* Remote procedure call server-side private API implementation.
*
* Copyright (c) 2016, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This is the main RPC server moddule. It creates a new thread to deal
* with each request, to prevent a long-running request (e.g. RSA keygen)
* from blocking independent requests from other clients. This has a
* number of consequences. We can't do a blocking receive in the main
* thread, because that prevents the dispatch thread from transmitting the
* response (because they both want to lock the UART - see
* stm32f4xx_hal_uart.c). So we have to do a non-blocking receive with a
* callback routine. But we can't create a thread from the callback
* routine, because it's in the context of an ISR, so we raise a semaphore
* for the main thread to create the dispatch thread.
*/
#include <string.h>
#include "cmsis_os.h"
#include "stm-init.h"
#include "stm-led.h"
#include "stm-fmc.h"
#include "stm-uart.h"
#include "stm-sdram.h"
/* stm32f4xx_hal_def.h and hal.h both define HAL_OK as an enum value */
#define HAL_OK HAL_OKAY
#include "hal.h"
#include "hal_internal.h"
#include "slip_internal.h"
#include "xdr_internal.h"
/* RPC buffers. For each active RPC, there will be two - input and output.
*/
#ifndef NUM_RPC_TASK
/* An arbitrary number, but we don't expect to have more than 8 concurrent
* RPC requests.
*/
#define NUM_RPC_TASK 8
#endif
#ifndef TASK_STACK_SIZE
/* Define an absurdly large task stack, because some pkey operation use a
* lot of stack variables.
*/
#define TASK_STACK_SIZE 64*1024
#endif
/* Put the task stack buffers in SDRAM, because ARM RAM is too small.
*/
__attribute__((section(".sdram1"))) uint8_t stack[NUM_RPC_TASK][TASK_STACK_SIZE];
#ifndef MAX_PKT_SIZE
/* Another arbitrary number, more or less driven by the 4096-bit RSA
* keygen test.
*/
#define MAX_PKT_SIZE 4096
#endif
/* The thread entry point takes a single void* argument, so we bundle the
* packet buffer and length arguments together.
*/
typedef struct {
size_t len;
uint8_t buf[MAX_PKT_SIZE];
} rpc_buffer_t;
/* A mutex to arbitrate concurrent UART transmits, from RPC responses.
*/
osMutexId uart_mutex;
osMutexDef(uart_mutex);
/* A mutex so only one dispatch thread can receive requests.
*/
osMutexId dispatch_mutex;
osMutexDef(dispatch_mutex);
/* Semaphore to inform the dispatch thread that there's a new RPC request.
*/
osSemaphoreId rpc_sem;
osSemaphoreDef(rpc_sem);
static uint8_t c; /* current character received from UART */
static rpc_buffer_t * volatile rbuf; /* current RPC input buffer */
/* Callback for HAL_UART_Receive_IT().
*/
void HAL_UART2_RxCpltCallback(UART_HandleTypeDef *huart)
{
int complete;
hal_slip_recv_char(rbuf->buf, &rbuf->len, sizeof(rbuf->buf), &complete);
if (complete)
osSemaphoreRelease(rpc_sem);
HAL_UART_Receive_IT(huart, &c, 1);
}
hal_error_t hal_serial_send_char(uint8_t c)
{
return (uart_send_char(c) == 0) ? HAL_OK : HAL_ERROR_RPC_TRANSPORT;
}
hal_error_t hal_serial_recv_char(uint8_t *cp)
{
/* return the character from HAL_UART_Receive_IT */
*cp = c;
return HAL_OK;
}
/* Thread entry point for the RPC request handler.
*/
static void dispatch_thread(void const *args)
{
rpc_buffer_t ibuf, obuf;
while (1) {
memset(&ibuf, 0, sizeof(ibuf));
memset(&obuf, 0, sizeof(obuf));
/* Wait for access to the uart */
osMutexWait(dispatch_mutex, osWaitForever);
/* Wait for the complete rpc request */
rbuf = &ibuf;
osSemaphoreWait(rpc_sem, osWaitForever);
/* Let the next thread handle the next request */
osMutexRelease(dispatch_mutex);
/* Let the next thread take the mutex */
osThreadYield();
/* Copy client ID from request to response */
memcpy(obuf.buf, ibuf.buf, 4);
obuf.len = sizeof(obuf.buf) - 4;
/* Process the request */
hal_rpc_server_dispatch(ibuf.buf + 4, ibuf.len - 4, obuf.buf + 4, &obuf.len);
/* Send the response */
osMutexWait(uart_mutex, osWaitForever);
hal_error_t ret = hal_rpc_sendto(obuf.buf, obuf.len + 4, NULL);
osMutexRelease(uart_mutex);
if (ret != HAL_OK)
Error_Handler();
}
}
osThreadDef_t thread_def[NUM_RPC_TASK];
/* The main thread. This does all the setup, and the worker threads handle
* the rest.
*/
int main()
{
stm_init();
#ifdef TARGET_CRYPTECH_DEV_BRIDGE
/* Wait six seconds to not upset the Novena at boot. */
led_on(LED_BLUE);
for (int i = 0; i < 12; i++) {
osDelay(500);
led_toggle(LED_BLUE);
}
led_off(LED_BLUE);
#endif
led_on(LED_GREEN);
/* Prepare FMC interface. */
fmc_init();
sdram_init();
/* Haaaack. probe_cores() calls malloc(), which works from the main
* thread, but not from a spawned thread. It would be better to
* rewrite it to use static memory, but for now, just force it to
* probe early.
*/
hal_core_iterate(NULL);
uart_mutex = osMutexCreate(osMutex(uart_mutex));
dispatch_mutex = osMutexCreate(osMutex(dispatch_mutex));
rpc_sem = osSemaphoreCreate(osSemaphore(rpc_sem), 0);
#ifdef TARGET_CRYPTECH_ALPHA
/* Launch other threads:
* - admin thread on USART1
* - csprng warm-up thread?
*/
#endif
if (hal_rpc_server_init() != HAL_OK)
Error_Handler();
/* Create the rpc dispatch threads */
for (int i = 0; i < NUM_RPC_TASK; ++i) {
osThreadDef_t *ot = &thread_def[i];
ot->pthread = dispatch_thread;
ot->tpriority = osPriorityNormal;
ot->stacksize = TASK_STACK_SIZE;
ot->stack_pointer = (uint32_t *)stack[i];
if (osThreadCreate(ot, (void *)i) == NULL)
Error_Handler();
}
/* Start the non-blocking receive */
HAL_UART_Receive_IT(&huart_user, &c, 1);
while (1) { ; }
}
|