aboutsummaryrefslogtreecommitdiff
path: root/projects/cli-test/test_sdram.c
blob: 4961b94f6f2e7e093059cc51c7128381f4f0d54c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*
 * test_sdram.c
 * ------------
 * Test code for the 2x512 MBit SDRAM working memory.
 *
 * Copyright (c) 2016, NORDUnet A/S All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the NORDUnet nor the names of its contributors may
 *   be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#include "stm-led.h"
#include "stm-sdram.h"
#include "test_sdram.h"


uint32_t lfsr1;
uint32_t lfsr2;


int test_sdram_sequential(uint32_t *base_addr)
{
    // memory offset
    int offset;

    // readback value
    uint32_t sdram_readback;


    /* This test fills entire memory chip with some pseudo-random pattern
       starting from the very first cell and going in linear fashion. It then
       reads entire memory and compares read values with what was written. */


    // turn on yellow led to indicate, that we're writing
    led_on(LED_YELLOW);


    //
    // Note, that SDRAM_SIZE is in BYTES, and since we write using
    // 32-bit words, total number of words is SDRAM_SIZE / 4.
    //

    // fill entire memory with "random" values
    for (offset=0; offset<(SDRAM_SIZE >> 2); offset++)	{
	// generate next "random" value to write
	lfsr1 = lfsr_next_32(lfsr1);

	// write to memory
	base_addr[offset] = lfsr1;
    }


    // turn off yellow led to indicate, that we're going to read
    led_off(LED_YELLOW);


    // read entire memory and compare values
    for (offset=0; offset<(SDRAM_SIZE >> 2); offset++)	{
	// generate next "random" value (we use the second LFSR to catch up)
	lfsr2 = lfsr_next_32(lfsr2);

	// read from memory
	sdram_readback = base_addr[offset];

	// compare and abort test in case of mismatch
	if (sdram_readback != lfsr2) return 0;
    }

    // done
    return 1;
}


//-----------------------------------------------------------------------------
int test_sdram_random(uint32_t *base_addr)
//-----------------------------------------------------------------------------
{
    // cell counter, memory offset
    int counter, offset;

    // readback value
    uint32_t sdram_readback;


    /* This test fills entire memory chip with some pseudo-random pattern
       starting from the very first cell, but then jumping around in pseudo-
       random fashion to make sure, that SDRAM controller in STM32 handles
       bank, row and column switching correctly. It then reads entire memory
       and compares read values with what was written. */


    // turn on yellow led to indicate, that we're writing
    led_on(LED_YELLOW);


    //
    // Note, that SDRAM_SIZE is in BYTES, and since we write using
    // 32-bit words, total number of words is SDRAM_SIZE / 4.
    //

    // start with the first cell
    for (counter=0, offset=0; counter<(SDRAM_SIZE >> 2); counter++)	{
	// generate next "random" value to write
	lfsr1 = lfsr_next_32(lfsr1);

	// write to memory
	base_addr[offset] = lfsr1;

	// generate next "random" address

	//
	// Note, that for 64 MB memory with 32-bit data bus we need 24 bits
	// of address, so we use 24-bit LFSR here. Since LFSR has only 2^^24-1
	// states, i.e. all possible 24-bit values excluding 0, we have to
	// manually kick it into some arbitrary state during the first iteration.
	//

	offset = offset ? lfsr_next_24(offset) : 0x00DEC0DE;
    }


    // turn off yellow led to indicate, that we're going to read
    led_off(LED_YELLOW);


    // read entire memory and compare values
    for (counter=0, offset=0; counter<(SDRAM_SIZE >> 2); counter++) {
	// generate next "random" value (we use the second LFSR to catch up)
	lfsr2 = lfsr_next_32(lfsr2);

	// read from memory
	sdram_readback = base_addr[offset];

	// compare and abort test in case of mismatch
	if (sdram_readback != lfsr2) return 0;

	// generate next "random" address
	offset = offset ? lfsr_next_24(offset) : 0x00DEC0DE;
    }

    //
    // we should have walked exactly 2**24 iterations and returned
    // back to the arbitrary starting address...
    //

    if (offset != 0x00DEC0DE) return 0;


    // done
    return 1;
}


//-----------------------------------------------------------------------------
int test_sdrams_interleaved(uint32_t *base_addr1, uint32_t *base_addr2)
//-----------------------------------------------------------------------------
{
    // cell counter, memory offsets
    int counter, offset1, offset2;

    // readback value
    uint32_t sdram_readback;


    /* Basically this is the same as test_sdram_random() except that it
       tests both memory chips at the same time. */


    // turn on yellow led to indicate, that we're writing
    led_on(LED_YELLOW);


    //
    // Note, that SDRAM_SIZE is in BYTES, and since we write using
    // 32-bit words, total number of words is SDRAM_SIZE / 4.
    //

    // start with the first cell
    for (counter=0, offset1=0, offset2=0; counter<(SDRAM_SIZE >> 2); counter++)	{
	// generate next "random" value to write
	lfsr1 = lfsr_next_32(lfsr1);

	// write to memory
	base_addr1[offset1] = lfsr1;
	base_addr2[offset2] = lfsr1;

	// generate next "random" addresses (use different starting states!)

	offset1 = offset1 ? lfsr_next_24(offset1) : 0x00ABCDEF;
	offset2 = offset2 ? lfsr_next_24(offset2) : 0x00FEDCBA;
    }


    // turn off yellow led to indicate, that we're going to read
    led_off(LED_YELLOW);


    // read entire memory and compare values
    for (counter=0, offset1=0, offset2=0; counter<(SDRAM_SIZE >> 2); counter++)	{
	// generate next "random" value (we use the second LFSR to catch up)
	lfsr2 = lfsr_next_32(lfsr2);

	// read from the first memory and compare
	sdram_readback = base_addr1[offset1];
	if (sdram_readback != lfsr2) return 0;

	// read from the second memory and compare
	sdram_readback = base_addr2[offset2];
	if (sdram_readback != lfsr2) return 0;

	// generate next "random" addresses
	offset1 = offset1 ? lfsr_next_24(offset1) : 0x00ABCDEF;
	offset2 = offset2 ? lfsr_next_24(offset2) : 0x00FEDCBA;
    }

    //
    // we should have walked exactly 2**24 iterations and returned
    // back to the arbitrary starting address...
    //

    if (offset1 != 0x00ABCDEF) return 0;
    if (offset2 != 0x00FEDCBA) return 0;

    // done
    return 1;
}

uint32_t lfsr_next_32(uint32_t lfsr)
{
    uint32_t tap = 0;

    tap ^= (lfsr >> 31);
    tap ^= (lfsr >> 30);
    tap ^= (lfsr >> 29);
    tap ^= (lfsr >> 9);

    return (lfsr << 1) | (tap & 1);
}

uint32_t lfsr_next_24(uint32_t lfsr)
{
    unsigned int tap = 0;

    tap ^= (lfsr >> 23);
    tap ^= (lfsr >> 22);
    tap ^= (lfsr >> 21);
    tap ^= (lfsr >> 16);

    return ((lfsr << 1) | (tap & 1)) & 0x00FFFFFF;
}