1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
/*
* Test read/write/erase performance of the N25Q128 SPI flash chip.
*/
#include "string.h"
#include "stm-init.h"
#include "stm-led.h"
#include "stm-uart.h"
#include "stm-keystore.h"
#include "spiflash_n25q128.h"
/*
* Use the keystore memory for testing, because it's less involved than
* using the FPGA configuration memory, and less work to restore it to a
* useful configuration.
*
* However, rather than using the stm-keystore abstractions, this version
* goes straight to the low-level API.
*/
extern struct spiflash_ctx keystore_ctx;
static struct spiflash_ctx *ctx = &keystore_ctx;
/*
* 1. Read the entire flash by pages, ignoring data.
*/
static void test_read_page(void)
{
uint8_t read_buf[N25Q128_PAGE_SIZE];
uint32_t i;
int err;
for (i = 0; i < N25Q128_NUM_PAGES; ++i) {
err = n25q128_read_page(ctx, i, read_buf);
if (err != 1) {
uart_send_string("ERROR: n25q128_read_page returned ");
uart_send_integer(err, 0);
uart_send_string("\r\n");
break;
}
}
}
/*
* Read the flash data and verify it against a known pattern.
* It turns out that verification doesn't slow us down in any measurable
* way, because memcmp on 256 bytes is pretty inconsequential.
*/
static void _read_verify(uint8_t *vrfy_buf)
{
uint8_t read_buf[N25Q128_PAGE_SIZE];
uint32_t i;
int err;
for (i = 0; i < N25Q128_NUM_PAGES; ++i) {
err = n25q128_read_page(ctx, i, read_buf);
if (err != 1) {
uart_send_string("ERROR: n25q128_read_page returned ");
uart_send_integer(err, 0);
uart_send_string("\r\n");
break;
}
if (memcmp(read_buf, vrfy_buf, N25Q128_PAGE_SIZE) != 0) {
uart_send_string("ERROR: verify failed in page ");
uart_send_integer(i, 0);
uart_send_string("\r\n");
break;
}
}
}
/*
* 2a. Erase the entire flash by sectors.
*/
static void test_erase_sector(void)
{
uint32_t i;
int err;
for (i = 0; i < N25Q128_NUM_SECTORS; ++i) {
err = n25q128_erase_sector(ctx, i);
if (err != 1) {
uart_send_string("ERROR: n25q128_erase_sector returned ");
uart_send_integer(err, 0);
uart_send_string("\r\n");
break;
}
}
}
/*
* 2b. Erase the entire flash by subsectors.
*/
static void test_erase_subsector(void)
{
uint32_t i;
int err;
for (i = 0; i < N25Q128_NUM_SUBSECTORS; ++i) {
err = n25q128_erase_subsector(ctx, i);
if (err != 1) {
uart_send_string("ERROR: n25q128_erase_subsector returned ");
uart_send_integer(err, 0);
uart_send_string("\r\n");
break;
}
}
}
/*
* 2c. Erase the entire flash in bulk.
*/
static void test_erase_bulk(void)
{
int err;
err = n25q128_erase_bulk(ctx);
if (err != 1) {
uart_send_string("ERROR: n25q128_erase_bulk returned ");
uart_send_integer(err, 0);
uart_send_string("\r\n");
}
}
/*
* 2d. Read the entire flash, verify erasure.
*/
static void test_verify_erase(void)
{
uint8_t vrfy_buf[N25Q128_PAGE_SIZE];
uint32_t i;
for (i = 0; i < sizeof(vrfy_buf); ++i)
vrfy_buf[i] = 0xFF;
_read_verify(vrfy_buf);
}
/*
* 3a. Write the entire flash with a pattern.
*/
static void test_write_page(void)
{
uint8_t write_buf[N25Q128_PAGE_SIZE];
uint32_t i;
int err;
for (i = 0; i < sizeof(write_buf); ++i)
write_buf[i] = i & 0xFF;
for (i = 0; i < N25Q128_NUM_PAGES; ++i) {
err = n25q128_write_page(ctx, i, write_buf);
if (err != 1) {
uart_send_string("ERROR: n25q128_write_page returned ");
uart_send_integer(err, 0);
uart_send_string(" for page ");
uart_send_integer(i, 0);
uart_send_string("\r\n");
break;
}
}
}
/*
* 3b. Read the entire flash, verify data.
*/
static void test_verify_write(void)
{
uint8_t vrfy_buf[N25Q128_PAGE_SIZE];
uint32_t i;
for (i = 0; i < sizeof(vrfy_buf); ++i)
vrfy_buf[i] = i & 0xFF;
_read_verify(vrfy_buf);
}
static void _time_check(char *label, const uint32_t t0, uint32_t n_rounds)
{
uint32_t t = HAL_GetTick() - t0;
uart_send_string(label);
uart_send_integer(t / 1000, 0);
uart_send_char('.');
uart_send_integer(t % 1000, 3);
uart_send_string(" sec");
if (n_rounds > 1) {
uart_send_string(" for ");
uart_send_integer(n_rounds, 0);
uart_send_string(" rounds, ");
uart_send_integer(t / n_rounds, 0);
uart_send_char('.');
uart_send_integer(((t % n_rounds) * 100) / n_rounds, 2);
uart_send_string(" ms each");
}
uart_send_string("\r\n");
}
#define time_check(_label_, _expr_, _n_) \
do { \
uint32_t _t = HAL_GetTick(); \
(_expr_); \
_time_check(_label_, _t, _n_); \
} while (0)
int main(void)
{
stm_init();
uart_set_default(STM_UART_MGMT);
if (n25q128_check_id(ctx) != 1) {
uart_send_string("ERROR: n25q128_check_id failed\r\n");
return 0;
}
uart_send_string("Starting...\r\n");
time_check("read page ", test_read_page(), N25Q128_NUM_PAGES);
time_check("erase subsector ", test_erase_subsector(), N25Q128_NUM_SUBSECTORS);
time_check("erase sector ", test_erase_sector(), N25Q128_NUM_SECTORS);
time_check("erase bulk ", test_erase_bulk(), 1);
time_check("verify erase ", test_verify_erase(), N25Q128_NUM_PAGES);
time_check("write page ", test_write_page(), N25Q128_NUM_PAGES);
time_check("verify write ", test_verify_write(), N25Q128_NUM_PAGES);
uart_send_string("Done.\r\n\r\n");
return 0;
}
|