aboutsummaryrefslogtreecommitdiff
path: root/bin/flash-target
blob: bebcb27b195c3927367375d47eaabdcfe6bd53a2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#!/bin/sh

PROJ="${1?'project'}"

OPENOCD=openocd

# location of OpenOCD Board .cfg files (only used with 'make flash-target')
#
# This path is from Ubuntu 14.04.
#
OPENOCD_BOARD_DIR=/usr/share/openocd/scripts/board

# Configuration (cfg) file containing programming directives for OpenOCD
#
# If you are using an STLINK v2.0 from an STM32 F4 DISCOVERY board,
# set this variable to "stm32f4discovery.cfg".
#
# If you are using an STLINK v2.1 from an STM32 F4 NUCLEO board,
# set this variable to "st_nucleo_f401re.cfg".
#
# If you are using something else, look for a matching configuration file in
# the OPENOCD_BOARD_DIR directory.
#
#OPENOCD_PROC_FILE=stm32f4discovery.cfg
OPENOCD_PROC_FILE=st_nucleo_f4.cfg

$OPENOCD -f $OPENOCD_BOARD_DIR/$OPENOCD_PROC_FILE -c "program $PROJ.elf verify reset exit"
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
#!/usr/bin/env python

"""
Securely back up private keys from one Cryptech HSM to another.

This works by having the destination HSM (the one importing keys)
create an RSA keypair (the "KEKEK"), the public key of which can then
be imported into the source HSM (the one exporting keys) and used to
encrypt AES key encryption keys (KEKs) which in turn can be used to
wrap the private keys being transfered.  Transfers are encoded in
JSON; the underlying ASN.1 formats are SubjectPublicKeyInfo (KEKEK
public key) and PKCS #8 EncryptedPrivateKeyInfo (everything else).

NOTE WELL: while this process makes it POSSIBLE to back up keys
securely, it is not sufficient by itself: the operator MUST make
sure only to export keys using a KEKEK known to have been generated by
the target HSM.  See the unit tests in the source repository for
an example of how to fake this in a few lines of Python.

We also implement a software-based variant on this backup mechanism,
for cases where there is no second HSM.  The protocol is much the
same, but the KEKEK is generated in software and encrypted using a
symmetric key derived from a passphrase using PBKDF2.  This requires
the PyCrypto library, and is only as secure as memory on the machine
where you're running it (so it's theoretically vulnerable to root or
anybody with access to /dev/mem).  Don't use this mode unless you
understand the risks, and see the "NOTE WELL" above.

YOU HAVE BEEN WARNED.  Be careful out there.
"""

# Diagram of the trivial protocol we're using:
#
#    SOURCE HSM                            DESTINATION HSM
#
#                                          Generate and export KEKEK:
#                                               hal_rpc_pkey_generate_rsa()
#                                               hal_rpc_pkey_get_public_key()
#
#   Load KEKEK public        <---------    Export KEKEK public
#        hal_rpc_pkey_load()
#        hal_rpc_pkey_export()
#
#   Export PKCS #8 and KEK   ---------->   Load PKCS #8 and KEK, import key
#                                               hal_rpc_pkey_import()

import sys
import json
import uuid
import atexit
import getpass
import argparse

from cryptech.libhal import *

def main():

    parser = argparse.ArgumentParser(
        formatter_class = argparse.RawDescriptionHelpFormatter,
        description = __doc__)
    subparsers = parser.add_subparsers(
        title = "Commands (use \"--help\" after command name for help with individual commands)",
        metavar = "")
    setup_parser  = defcmd(subparsers, cmd_setup)
    export_parser = defcmd(subparsers, cmd_export)
    import_parser = defcmd(subparsers, cmd_import)
    setup_mutex_group = setup_parser.add_mutually_exclusive_group()


    parser.add_argument(
        "-p", "--pin",
        help    = "wheel PIN")


    setup_mutex_group.add_argument(
        "-n", "--new",
        action  = "store_true",
        help    = "force creation of new KEKEK")

    setup_mutex_group.add_argument(
        "-u", "--uuid",
        help    = "UUID of existing KEKEK to use")

    setup_mutex_group.add_argument(
        "-s", "--soft-backup",
        action = "store_true",
        help   = "software-based backup, see warnings")

    setup_parser.add_argument(
        "-k", "--keylen",
        type    = int,
        default = 2048,
        help    = "length of new KEKEK if we need to create one")

    setup_parser.add_argument(
        "-o", "--output",
        type    = argparse.FileType("w"),
        default = "-",
        help    = "output file")


    export_parser.add_argument(
        "-i", "--input",
        type    = argparse.FileType("r"),
        default = "-",
        help    = "input file")

    export_parser.add_argument(
        "-o", "--output",
        type    = argparse.FileType("w"),
        default = "-",
        help    = "output file")


    import_parser.add_argument(
        "-i", "--input",
        type    = argparse.FileType("r"),
        default = "-",
        help    = "input file")


    args = parser.parse_args()

    hsm = HSM()

    try:
        hsm.login(HAL_USER_WHEEL, args.pin or getpass.getpass("Wheel PIN: "))

    except HALError as e:
        sys.exit("Couldn't log into HSM: {}".format(e))

    try:
        sys.exit(args.func(args, hsm))

    finally:
        hsm.logout()


def defcmd(subparsers, func):
    assert func.__name__.startswith("cmd_")
    subparser = subparsers.add_parser(func.__name__[4:],
                                      description = func.__doc__,
                                      help = func.__doc__.strip().splitlines()[0])
    subparser.set_defaults(func = func)
    return subparser


def b64(bytes):
    return bytes.encode("base64").splitlines()

def b64join(lines):
    return "".join(lines).decode("base64")


def cmd_setup(args, hsm):
    """
    Set up backup HSM for subsequent import.
    Generates an RSA keypair with appropriate usage settings
    to use as a key-encryption-key-encryption-key (KEKEK), and
    writes the KEKEK to a JSON file for transfer to primary HSM.
    """

    result = {}
    uuids  = []

    if args.soft_backup:
        SoftKEKEK.generate(args, result)
    elif args.uuid:
        uuids.append(args.uuid)
    elif not args.new:
        uuids.extend(hsm.pkey_match(
            type  = HAL_KEY_TYPE_RSA_PRIVATE,
            mask  = HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT | HAL_KEY_FLAG_TOKEN,
            flags = HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT | HAL_KEY_FLAG_TOKEN))

    for uuid in uuids:
        with hsm.pkey_open(uuid) as kekek:
            if kekek.key_type != HAL_KEY_TYPE_RSA_PRIVATE:
                sys.stderr.write("Key {} is not an RSA private key\n".format(uuid))
            elif (kekek.key_flags & HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT) == 0:
                sys.stderr.write("Key {} does not allow key encipherment\n".format(uuid))
            else:
                result.update(kekek_uuid   = str(kekek.uuid),
                              kekek_pubkey = b64(kekek.public_key))
                break

    if not result and not args.uuid:
        with hsm.pkey_generate_rsa(
                keylen = args.keylen,
                flags = HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT | HAL_KEY_FLAG_TOKEN) as kekek:
            result.update(kekek_uuid   = str(kekek.uuid),
                          kekek_pubkey = b64(kekek.public_key))
    if not result:
        sys.exit("Could not find suitable KEKEK")

    if args.soft_backup:
        result.update(comment = "KEKEK software keypair")
    else:
        result.update(comment = "KEKEK public key")

    json.dump(result, args.output, indent = 4, sort_keys = True)
    args.output.write("\n")


def key_flag_names(flags):
    names = dict(digitalsignature = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE,
                 keyencipherment  = HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT,
                 dataencipherment = HAL_KEY_FLAG_USAGE_DATAENCIPHERMENT,
                 token            = HAL_KEY_FLAG_TOKEN,
                 public           = HAL_KEY_FLAG_PUBLIC,
                 exportable       = HAL_KEY_FLAG_EXPORTABLE)
    return ", ".join(sorted(k for k, v in names.iteritems() if (flags & v) != 0))


def cmd_export(args, hsm):
    """
    Export encrypted keys from primary HSM.
    Takes a JSON file containing KEKEK (generated by running this
    script's "setup" command against the backup HSM), installs that
    key on the primary HSM, and backs up keys encrypted to the KEKEK
    by writing them to another JSON file for transfer to the backup HSM.
    """

    db = json.load(args.input)

    result = []

    kekek = None
    try:
        kekek = hsm.pkey_load(der   = b64join(db["kekek_pubkey"]),
                              flags = HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT)

        for uuid in hsm.pkey_match(mask  = HAL_KEY_FLAG_EXPORTABLE,
                                   flags = HAL_KEY_FLAG_EXPORTABLE):
            with hsm.pkey_open(uuid) as pkey:

                if pkey.key_type in (HAL_KEY_TYPE_RSA_PRIVATE, HAL_KEY_TYPE_EC_PRIVATE):
                    pkcs8, kek = kekek.export_pkey(pkey)
                    result.append(dict(
                        comment = "Encrypted private key",
                        pkcs8   = b64(pkcs8),
                        kek     = b64(kek),
                        uuid    = str(pkey.uuid),
                        flags   = pkey.key_flags))

                elif pkey.key_type in (HAL_KEY_TYPE_RSA_PUBLIC, HAL_KEY_TYPE_EC_PUBLIC):
                    result.append(dict(
                        comment = "Public key",
                        spki    = b64(pkey.public_key),
                        uuid    = str(pkey.uuid),
                        flags   = pkey.key_flags))

    finally:
        if kekek is not None:
            kekek.delete()

    db.update(comment = "Cryptech Alpha encrypted key backup",
              keys    = result)
    json.dump(db, args.output, indent = 4, sort_keys = True)
    args.output.write("\n")


def cmd_import(args, hsm):
    """
    Import encrypted keys into backup HSM.
    Takes a JSON file containing a key backup (generated by running
    this script's "export" command against the primary HSM) and imports
    keys into the backup HSM.
    """

    db = json.load(args.input)

    soft_key = SoftKEKEK.is_soft_key(db)

    with (hsm.pkey_load(SoftKEKEK.recover(db), HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT)
          if soft_key else
          hsm.pkey_open(uuid.UUID(db["kekek_uuid"]).bytes)
    ) as kekek:

        for k in db["keys"]:
            pkcs8 = b64join(k.get("pkcs8", ""))
            spki  = b64join(k.get("spki",  ""))
            kek   = b64join(k.get("kek",   ""))
            flags =         k.get("flags",  0)
            if pkcs8 and kek:
                with kekek.import_pkey(pkcs8 = pkcs8, kek = kek, flags = flags) as pkey:
                    print "Imported {} as {}".format(k["uuid"], pkey.uuid)
            elif spki:
                with hsm.pkey_load(der = spki, flags = flags) as pkey:
                    print "Loaded {} as {}".format(k["uuid"], pkey.uuid)

        if soft_key:
            kekek.delete()


class AESKeyWrapWithPadding(object):
    """
    Implementation of AES Key Wrap With Padding from RFC 5649.
    """

    class UnwrapError(Exception):
        "Something went wrong during unwrap."

    def __init__(self, key):
        from Crypto.Cipher import AES
        self.ctx = AES.new(key, AES.MODE_ECB)

    def _encrypt(self, b1, b2):
        aes_block = self.ctx.encrypt(b1 + b2)
        return aes_block[:8], aes_block[8:]

    def _decrypt(self, b1, b2):
        aes_block = self.ctx.decrypt(b1 + b2)
        return aes_block[:8], aes_block[8:]

    @staticmethod
    def _start_stop(start, stop):               # Syntactic sugar
        step = -1 if start > stop else 1
        return xrange(start, stop + step, step)

    @staticmethod
    def _xor(R0, t):
        from struct import pack, unpack
        return pack(">Q", unpack(">Q", R0)[0] ^ t)

    def wrap(self, Q):
        "RFC 5649 section 4.1."
        from struct import pack
        m = len(Q)                              # Plaintext length
        if m % 8 != 0:                          # Pad Q if needed
            Q += "\x00" * (8 - (m % 8))
        R = [pack(">LL", 0xa65959a6, m)]        # Magic MSB(32,A), build LSB(32,A)
        R.extend(Q[i : i + 8]                   # Append Q
                 for i in xrange(0, len(Q), 8))
        n = len(R) - 1
        if n == 1:
            R[0], R[1] = self._encrypt(R[0], R[1])
        else:
            # RFC 3394 section 2.2.1
            for j in self._start_stop(0, 5):
                for i in self._start_stop(1, n):
                    R[0], R[i] = self._encrypt(R[0], R[i])
                    R[0] = self._xor(R[0], n * j + i)
        assert len(R) == (n + 1) and all(len(r) == 8 for r in R)
        return "".join(R)

    def unwrap(self, C):
        "RFC 5649 section 4.2."
        from struct import unpack
        if len(C) % 8 != 0:
            raise self.UnwrapError("Ciphertext length {} is not an integral number of blocks"
                                   .format(len(C)))
        n = (len(C) / 8) - 1
        R = [C[i : i + 8] for i in xrange(0, len(C), 8)]
        if n == 1:
            R[0], R[1] = self._decrypt(R[0], R[1])
        else:
            # RFC 3394 section 2.2.2 steps (1), (2), and part of (3)
            for j in self._start_stop(5, 0):
                for i in self._start_stop(n, 1):
                    R[0] = self._xor(R[0], n * j + i)
                    R[0], R[i] = self._decrypt(R[0], R[i])
        magic, m = unpack(">LL", R[0])
        if magic != 0xa65959a6:
            raise self.UnwrapError("Magic value in AIV should have been 0xa65959a6, was 0x{:02x}"
                              .format(magic))
        if m <= 8 * (n - 1) or m > 8 * n:
            raise self.UnwrapError("Length encoded in AIV out of range: m {}, n {}".format(m, n))
        R = "".join(R[1:])
        assert len(R) ==  8 * n
        if any(r != "\x00" for r in R[m:]):
            raise self.UnwrapError("Nonzero trailing bytes {}".format(R[m:].encode("hex")))
        return R[:m]


class SoftKEKEK(object):
    """
    Wrapper around all the goo we need to implement soft backups.
    Requires PyCrypto on about every other line.
    """

    oid_aesKeyWrap = "\x60\x86\x48\x01\x65\x03\x04\x01\x30"

    def parse_EncryptedPrivateKeyInfo(self, der):
        from Crypto.Util.asn1 import DerObject, DerSequence, DerOctetString, DerObjectId
        encryptedPrivateKeyInfo = DerSequence()
        encryptedPrivateKeyInfo.decode(der)
        encryptionAlgorithm = DerSequence()
        algorithm = DerObjectId()
        encryptedData = DerOctetString()
        encryptionAlgorithm.decode(encryptedPrivateKeyInfo[0])
        DerObject.decode(algorithm, encryptionAlgorithm[0])
        DerObject.decode(encryptedData, encryptedPrivateKeyInfo[1])
        if algorithm.payload != self.oid_aesKeyWrap:
            raise ValueError
        return encryptedData.payload

    def encode_EncryptedPrivateKeyInfo(self, der):
        from Crypto.Util.asn1 import DerSequence, DerOctetString
        return DerSequence([
            DerSequence([
                chr(0x06) + chr(len(self.oid_aesKeyWrap)) + self.oid_aesKeyWrap
            ]).encode(),
            DerOctetString(der).encode()
        ]).encode()

    def gen_salt(self, bytes = 16):
        from Crypto import Random
        return Random.new().read(bytes)

    def wrapper(self, salt, keylen = 256, iterations = 8000):
        from Crypto.Protocol.KDF import PBKDF2
        from Crypto.Hash         import SHA256, HMAC
        return AESKeyWrapWithPadding(PBKDF2(
            password = getpass.getpass("KEKEK Passphrase: "),
            salt     = salt,
            dkLen    = keylen/8,
            count    = iterations,
            prf      = lambda p, s: HMAC.new(p, s, SHA256).digest()))

    @classmethod
    def is_soft_key(cls, db):
        return all(k in db for k in ("kekek_pkcs8", "kekek_salt"))

    @classmethod
    def generate(cls, args, result):
        from Crypto.PublicKey import RSA
        self = cls()
        k = RSA.generate(args.keylen)
        salt  = self.gen_salt()
        spki  = k.publickey().exportKey(format = "DER")
        pkcs8 = self.encode_EncryptedPrivateKeyInfo(self.wrapper(salt).wrap(
            k.exportKey(format = "DER", pkcs = 8)))
        result.update(kekek_salt   = b64(salt),
                      kekek_pkcs8  = b64(pkcs8),
                      kekek_pubkey = b64(spki))

    @classmethod
    def recover(cls, db):
        self = cls()
        return self.wrapper(b64join(db["kekek_salt"])).unwrap(
            self.parse_EncryptedPrivateKeyInfo(b64join(db["kekek_pkcs8"])))


if __name__ == "__main__":
    main()