aboutsummaryrefslogtreecommitdiff
path: root/Drivers/STM32F4xx_HAL_Driver/Inc/stm32f4xx_hal_uart.h
blob: 8e740bc38aba78789b18e7031392820cf141b5c4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/**
  ******************************************************************************
  * @file    stm32f4xx_hal_uart.h
  * @author  MCD Application Team
  * @version V1.3.2
  * @date    26-June-2015
  * @brief   Header file of UART HAL module.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F4xx_HAL_UART_H
#define __STM32F4xx_HAL_UART_H

#ifdef __cplusplus
 extern "C" {
#endif

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal_def.h"

/** @addtogroup STM32F4xx_HAL_Driver
  * @{
  */

/** @addtogroup UART
  * @{
  */

/* Exported types ------------------------------------------------------------*/
/** @defgroup UART_Exported_Types UART Exported Types
  * @{
  */

/**
  * @brief UART Init Structure definition
  */
typedef struct
{
  uint32_t BaudRate;                  /*!< This member configures the UART communication baud rate.
                                           The baud rate is computed using the following formula:
                                           - IntegerDivider = ((PCLKx) / (8 * (OVR8+1) * (huart->Init.BaudRate)))
                                           - FractionalDivider = ((IntegerDivider - ((uint32_t) IntegerDivider)) * 8 * (OVR8+1)) + 0.5
                                           Where OVR8 is the "oversampling by 8 mode" configuration bit in the CR1 register. */

  uint32_t WordLength;                /*!< Specifies the number of data bits transmitted or received in a frame.
                                           This parameter can be a value of @ref UART_Word_Length */

  uint32_t StopBits;                  /*!< Specifies the number of stop bits transmitted.
                                           This parameter can be a value of @ref UART_Stop_Bits */

  uint32_t Parity;                    /*!< Specifies the parity mode.
                                           This parameter can be a value of @ref UART_Parity
                                           @note When parity is enabled, the computed parity is inserted
                                                 at the MSB position of the transmitted data (9th bit when
                                                 the word length is set to 9 data bits; 8th bit when the
                                                 word length is set to 8 data bits). */

  uint32_t Mode;                      /*!< Specifies whether the Receive or Transmit mode is enabled or disabled.
                                           This parameter can be a value of @ref UART_Mode */

  uint32_t HwFlowCtl;                 /*!< Specifies whether the hardware flow control mode is enabled
                                           or disabled.
                                           This parameter can be a value of @ref UART_Hardware_Flow_Control */

  uint32_t OverSampling;              /*!< Specifies whether the Over sampling 8 is enabled or disabled, to achieve higher speed (up to fPCLK/8).
                                           This parameter can be a value of @ref UART_Over_Sampling */
}UART_InitTypeDef;

/**
  * @brief HAL UART State structures definition
  */
typedef enum
{
  HAL_UART_STATE_RESET             = 0x00,    /*!< Peripheral is not yet Initialized                  */
  HAL_UART_STATE_READY             = 0x01,    /*!< Peripheral Initialized and ready for use           */
  HAL_UART_STATE_BUSY              = 0x02,    /*!< an internal process is ongoing                     */
  HAL_UART_STATE_BUSY_TX           = 0x12,    /*!< Data Transmission process is ongoing               */
  HAL_UART_STATE_BUSY_RX           = 0x22,    /*!< Data Reception process is ongoing                  */
  HAL_UART_STATE_BUSY_TX_RX        = 0x32,    /*!< Data Transmission and Reception process is ongoing */
  HAL_UART_STATE_TIMEOUT           = 0x03,    /*!< Timeout state                                      */
  HAL_UART_STATE_ERROR             = 0x04     /*!< Error                                              */
}HAL_UART_StateTypeDef;

/**
  * @brief  UART handle Structure definition
  */
typedef struct
{
  USART_TypeDef                 *Instance;        /*!< UART registers base address        */

  UART_InitTypeDef              Init;             /*!< UART communication parameters      */

  uint8_t                       *pTxBuffPtr;      /*!< Pointer to UART Tx transfer Buffer */

  uint16_t                      TxXferSize;       /*!< UART Tx Transfer size              */

  uint16_t                      TxXferCount;      /*!< UART Tx Transfer Counter           */

  uint8_t                       *pRxBuffPtr;      /*!< Pointer to UART Rx transfer Buffer */

  uint16_t                      RxXferSize;       /*!< UART Rx Transfer size              */

  uint16_t                      RxXferCount;      /*!< UART Rx Transfer Counter           */

  DMA_HandleTypeDef             *hdmatx;          /*!< UART Tx DMA Handle parameters      */

  DMA_HandleTypeDef             *hdmarx;          /*!< UART Rx DMA Handle parameters      */

  HAL_LockTypeDef               Lock;             /*!< Locking object                     */

  __IO HAL_UART_StateTypeDef    State;            /*!< UART communication state           */

  __IO uint32_t                 ErrorCode;        /*!< UART Error code                    */

}UART_HandleTypeDef;
/**
  * @}
  */

/* Exported constants --------------------------------------------------------*/
/** @defgroup UART_Exported_Constants UART Exported constants
  * @{
  */

/** @defgroup UART_Error_Code UART Error Code
  * @brief    UART Error Code
  * @{
  */
#define HAL_UART_ERROR_NONE         ((uint32_t)0x00000000)   /*!< No error            */
#define HAL_UART_ERROR_PE           ((uint32_t)0x00000001)   /*!< Parity error        */
#define HAL_UART_ERROR_NE           ((uint32_t)0x00000002)   /*!< Noise error         */
#define HAL_UART_ERROR_FE           ((uint32_t)0x00000004)   /*!< Frame error         */
#define HAL_UART_ERROR_ORE          ((uint32_t)0x00000008)   /*!< Overrun error       */
#define HAL_UART_ERROR_DMA          ((uint32_t)0x00000010)   /*!< DMA transfer error  */
/**
  * @}
  */

/** @defgroup UART_Word_Length UART Word Length
  * @{
  */
#define UART_WORDLENGTH_8B                  ((uint32_t)0x00000000)
#define UART_WORDLENGTH_9B                  ((uint32_t)USART_CR1_M)
/**
  * @}
  */

/** @defgroup UART_Stop_Bits UART Number of Stop Bits
  * @{
  */
#define UART_STOPBITS_1                     ((uint32_t)0x00000000)
#define UART_STOPBITS_2                     ((uint32_t)USART_CR2_STOP_1)
/**
  * @}
  */

/** @defgroup UART_Parity UART Parity
  * @{
  */
#define UART_PARITY_NONE                    ((uint32_t)0x00000000)
#define UART_PARITY_EVEN                    ((uint32_t)USART_CR1_PCE)
#define UART_PARITY_ODD                     ((uint32_t)(USART_CR1_PCE | USART_CR1_PS))
/**
  * @}
  */

/** @defgroup UART_Hardware_Flow_Control UART Hardware Flow Control
  * @{
  */
#define UART_HWCONTROL_NONE                  ((uint32_t)0x00000000)
#define UART_HWCONTROL_RTS                   ((uint32_t)USART_CR3_RTSE)
#define UART_HWCONTROL_CTS                   ((uint32_t)USART_CR3_CTSE)
#define UART_HWCONTROL_RTS_CTS               ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE))
/**
  * @}
  */

/** @defgroup UART_Mode UART Transfer Mode
  * @{
  */
#define UART_MODE_RX                        ((uint32_t)USART_CR1_RE)
#define UART_MODE_TX                        ((uint32_t)USART_CR1_TE)
#define UART_MODE_TX_RX                     ((uint32_t)(USART_CR1_TE |USART_CR1_RE))
/**
  * @}
  */

 /** @defgroup UART_State UART State
  * @{
  */
#define UART_STATE_DISABLE                  ((uint32_t)0x00000000)
#define UART_STATE_ENABLE                   ((uint32_t)USART_CR1_UE)
/**
  * @}
  */

/** @defgroup UART_Over_Sampling UART Over Sampling
  * @{
  */
#define UART_OVERSAMPLING_16                    ((uint32_t)0x00000000)
#define UART_OVERSAMPLING_8                     ((uint32_t)USART_CR1_OVER8)
/**
  * @}
  */

/** @defgroup UART_LIN_Break_Detection_Length  UART LIN Break Detection Length
  * @{
  */
#define UART_LINBREAKDETECTLENGTH_10B      ((uint32_t)0x00000000)
#define UART_LINBREAKDETECTLENGTH_11B      ((uint32_t)0x00000020)
/**
  * @}
  */

/** @defgroup UART_WakeUp_functions  UART Wakeup Functions
  * @{
  */
#define UART_WAKEUPMETHOD_IDLELINE                ((uint32_t)0x00000000)
#define UART_WAKEUPMETHOD_ADDRESSMARK             ((uint32_t)0x00000800)
/**
  * @}
  */

/** @defgroup UART_Flags   UART FLags
  *        Elements values convention: 0xXXXX
  *           - 0xXXXX  : Flag mask in the SR register
  * @{
  */
#define UART_FLAG_CTS                       ((uint32_t)USART_SR_CTS)
#define UART_FLAG_LBD                       ((uint32_t)USART_SR_LBD)
#define UART_FLAG_TXE                       ((uint32_t)USART_SR_TXE)
#define UART_FLAG_TC                        ((uint32_t)USART_SR_TC)
#define UART_FLAG_RXNE                      ((uint32_t)USART_SR_RXNE)
#define UART_FLAG_IDLE                      ((uint32_t)USART_SR_IDLE)
#define UART_FLAG_ORE                       ((uint32_t)USART_SR_ORE)
#define UART_FLAG_NE                        ((uint32_t)USART_SR_NE)
#define UART_FLAG_FE                        ((uint32_t)USART_SR_FE)
#define UART_FLAG_PE                        ((uint32_t)USART_SR_PE)
/**
  * @}
  */

/** @defgroup UART_Interrupt_definition  UART Interrupt Definitions
  *        Elements values convention: 0xY000XXXX
  *           - XXXX  : Interrupt mask (16 bits) in the Y register
  *           - Y  : Interrupt source register (2bits)
  *                 - 0001: CR1 register
  *                 - 0010: CR2 register
  *                 - 0011: CR3 register
  *
  * @{
  */

#define UART_IT_PE                       ((uint32_t)(UART_CR1_REG_INDEX << 28 | USART_CR1_PEIE))
#define UART_IT_TXE                      ((uint32_t)(UART_CR1_REG_INDEX << 28 | USART_CR1_TXEIE))
#define UART_IT_TC                       ((uint32_t)(UART_CR1_REG_INDEX << 28 | USART_CR1_TCIE))
#define UART_IT_RXNE                     ((uint32_t)(UART_CR1_REG_INDEX << 28 | USART_CR1_RXNEIE))
#define UART_IT_IDLE                     ((uint32_t)(UART_CR1_REG_INDEX << 28 | USART_CR1_IDLEIE))

#define UART_IT_LBD                      ((uint32_t)(UART_CR2_REG_INDEX << 28 | USART_CR2_LBDIE))

#define UART_IT_CTS                      ((uint32_t)(UART_CR3_REG_INDEX << 28 | USART_CR3_CTSIE))
#define UART_IT_ERR                      ((uint32_t)(UART_CR3_REG_INDEX << 28 | USART_CR3_EIE))
/**
  * @}
  */

/**
  * @}
  */

/* Exported macro ------------------------------------------------------------*/
/** @defgroup UART_Exported_Macros UART Exported Macros
  * @{
  */

/** @brief Reset UART handle state
  * @param  __HANDLE__: specifies the UART Handle.
  *         This parameter can be UARTx where x: 1, 2, 3, 4, 5, 6, 7 or 8 to select the USART or
  *         UART peripheral.
  * @retval None
  */
#define __HAL_UART_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_UART_STATE_RESET)

/** @brief  Flushes the UART DR register
  * @param  __HANDLE__: specifies the UART Handle.
  */
#define __HAL_UART_FLUSH_DRREGISTER(__HANDLE__) ((__HANDLE__)->Instance->DR)

/** @brief  Checks whether the specified UART flag is set or not.
  * @param  __HANDLE__: specifies the UART Handle.
  *         This parameter can be UARTx where x: 1, 2, 3, 4, 5, 6, 7 or 8 to select the USART or
  *         UART peripheral.
  * @param  __FLAG__: specifies the flag to check.
  *        This parameter can be one of the following values:
  *            @arg UART_FLAG_CTS:  CTS Change flag (not available for UART4 and UART5)
  *            @arg UART_FLAG_LBD:  LIN Break detection flag
  *            @arg UART_FLAG_TXE:  Transmit data register empty flag
  *            @arg UART_FLAG_TC:   Transmission Complete flag
  *            @arg UART_FLAG_RXNE: Receive data register not empty flag
  *            @arg UART_FLAG_IDLE: Idle Line detection flag
  *            @arg UART_FLAG_ORE:  Overrun Error flag
  *            @arg UART_FLAG_NE:   Noise Error flag
  *            @arg UART_FLAG_FE:   Framing Error flag
  *            @arg UART_FLAG_PE:   Parity Error flag
  * @retval The new state of __FLAG__ (TRUE or FALSE).
  */

#define __HAL_UART_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__))

/** @brief  Clears the specified UART pending flag.
  * @param  __HANDLE__: specifies the UART Handle.
  *         This parameter can be UARTx where x: 1, 2, 3, 4, 5, 6, 7 or 8 to select the USART or
  *         UART peripheral.
  * @param  __FLAG__: specifies the flag to check.
  *          This parameter can be any combination of the following values:
  *            @arg UART_FLAG_CTS:  CTS Change flag (not available for UART4 and UART5).
  *            @arg UART_FLAG_LBD:  LIN Break detection flag.
  *            @arg UART_FLAG_TC:   Transmission Complete flag.
  *            @arg UART_FLAG_RXNE: Receive data register not empty flag.
  *
  * @note   PE (Parity error), FE (Framing error), NE (Noise error), ORE (Overrun
  *          error) and IDLE (Idle line detected) flags are cleared by software
  *          sequence: a read operation to USART_SR register followed by a read
  *          operation to USART_DR register.
  * @note   RXNE flag can be also cleared by a read to the USART_DR register.
  * @note   TC flag can be also cleared by software sequence: a read operation to
  *          USART_SR register followed by a write operation to USART_DR register.
  * @note   TXE flag is cleared only by a write to the USART_DR register.
  *
  * @retval None
  */
#define __HAL_UART_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR = ~(__FLAG__))

/** @brief  Clear the UART PE pending flag.
  * @param  __HANDLE__: specifies the UART Handle.
  *         This parameter can be UARTx where x: 1, 2, 3, 4, 5, 6, 7 or 8 to select the USART or
  *         UART peripheral.
  * @retval None
  */
#define __HAL_UART_CLEAR_PEFLAG(__HANDLE__)     \
  do{                                           \
    __IO uint32_t tmpreg;                       \
    tmpreg = (__HANDLE__)->Instance->SR;        \
    tmpreg = (__HANDLE__)->Instance->DR;        \
    UNUSED(tmpreg);                             \
  } while(0)

/** @brief  Clear the UART FE pending flag.
  * @param  __HANDLE__: specifies the UART Handle.
  *         This parameter can be UARTx where x: 1, 2, 3, 4, 5, 6, 7 or 8 to select the USART or
  *         UART peripheral.
  * @retval None
  */
#define __HAL_UART_CLEAR_FEFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)

/** @brief  Clear the UART NE pending flag.
  * @param  __HANDLE__: specifies the UART Handle.
  *         This parameter can be UARTx where x: 1, 2, 3, 4, 5, 6, 7 or 8 to select the USART or
  *         UART peripheral.
  * @retval None
  */
#define __HAL_UART_CLEAR_NEFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)

/** @brief  Clear the UART ORE pending flag.
  * @param  __HANDLE__: specifies the UART Handle.
  *         This parameter can be UARTx where x: 1, 2, 3, 4, 5, 6, 7 or 8 to select the USART or
  *         UART peripheral.
  * @retval None
  */
#define __HAL_UART_CLEAR_OREFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)

/** @brief  Clear the UART IDLE pending flag.
  * @param  __HANDLE__: specifies the UART Handle.
  *         This parameter can be UARTx where x: 1, 2, 3, 4, 5, 6, 7 or 8 to select the USART or
  *         UART peripheral.
  * @retval None
  */
#define __HAL_UART_CLEAR_IDLEFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)

/** @brief  Enable the specified UART interrupt.
  * @param  __HANDLE__: specifies the UART Handle.
  *         This parameter can be UARTx where x: 1, 2, 3, 4, 5, 6, 7 or 8 to select the USART or
  *         UART peripheral.
  * @param  __INTERRUPT__: specifies the UART interrupt source to enable.
  *          This parameter can be one of the following values:
  *            @arg UART_IT_CTS:  CTS change interrupt
  *            @arg UART_IT_LBD:  LIN Break detection interrupt
  *            @arg UART_IT_TXE:  Transmit Data Register empty interrupt
  *            @arg UART_IT_TC:   Transmission complete interrupt
  *            @arg UART_IT_RXNE: Receive Data register not empty interrupt
  *            @arg UART_IT_IDLE: Idle line detection interrupt
  *            @arg UART_IT_PE:   Parity Error interrupt
  *            @arg UART_IT_ERR:  Error interrupt(Frame error, noise error, overrun error)
  * @retval None
  */
#define UART_IT_MASK  ((uint32_t)0x0000FFFF)
#define __HAL_UART_ENABLE_IT(__HANDLE__, __INTERRUPT__)   ((((__INTERRUPT__) >> 28) == 1)? ((__HANDLE__)->Instance->CR1 |= ((__INTERRUPT__) & UART_IT_MASK)): \
                                                           (((__INTERRUPT__) >> 28) == 2)? ((__HANDLE__)->Instance->CR2 |=  ((__INTERRUPT__) & UART_IT_MASK)): \
                                                        ((__HANDLE__)->Instance->CR3 |= ((__INTERRUPT__) & UART_IT_MASK)))
/** @brief  Disable the specified UART interrupt.
  * @param  __HANDLE__: specifies the UART Handle.
  *         This parameter can be UARTx where x: 1, 2, 3, 4, 5, 6, 7 or 8 to select the USART or
  *         UART peripheral.
  * @param  __INTERRUPT__: specifies the UART interrupt source to disable.
  *          This parameter can be one of the following values:
  *            @arg UART_IT_CTS:  CTS change interrupt
  *            @arg UART_IT_LBD:  LIN Break detection interrupt
  *            @arg UART_IT_TXE:  Transmit Data Register empty interrupt
  *            @arg UART_IT_TC:   Transmission complete interrupt
  *            @arg UART_IT_RXNE: Receive Data register not empty interrupt
  *            @arg UART_IT_IDLE: Idle line detection interrupt
  *            @arg UART_IT_PE:   Parity Error interrupt
  *            @arg UART_IT_ERR:  Error interrupt(Frame error, noise error, overrun error)
  * @retval None
  */
#define __HAL_UART_DISABLE_IT(__HANDLE__, __INTERRUPT__)  ((((__INTERRUPT__) >> 28) == 1)? ((__HANDLE__)->Instance->CR1 &= ~((__INTERRUPT__) & UART_IT_MASK)): \
                                                           (((__INTERRUPT__) >> 28) == 2)? ((__HANDLE__)->Instance->CR2 &= ~((__INTERRUPT__) & UART_IT_MASK)): \
                                                        ((__HANDLE__)->Instance->CR3 &= ~ ((__INTERRUPT__) & UART_IT_MASK)))

/** @brief  Checks whether the specified UART interrupt has occurred or not.
  * @param  __HANDLE__: specifies the UART Handle.
  *         This parameter can be UARTx where x: 1, 2, 3, 4, 5, 6, 7 or 8 to select the USART or
  *         UART peripheral.
  * @param  __IT__: specifies the UART interrupt source to check.
  *          This parameter can be one of the following values:
  *            @arg UART_IT_CTS: CTS change interrupt (not available for UART4 and UART5)
  *            @arg UART_IT_LBD: LIN Break detection interrupt
  *            @arg UART_IT_TXE: Transmit Data Register empty interrupt
  *            @arg UART_IT_TC:  Transmission complete interrupt
  *            @arg UART_IT_RXNE: Receive Data register not empty interrupt
  *            @arg UART_IT_IDLE: Idle line detection interrupt
  *            @arg USART_IT_ERR: Error interrupt
  * @retval The new state of __IT__ (TRUE or FALSE).
  */
#define __HAL_UART_GET_IT_SOURCE(__HANDLE__, __IT__) (((((__IT__) >> 28) == 1)? (__HANDLE__)->Instance->CR1:(((((uint32_t)(__IT__)) >> 28) == 2)? \
                                                      (__HANDLE__)->Instance->CR2 : (__HANDLE__)->Instance->CR3)) & (((uint32_t)(__IT__)) & UART_IT_MASK))

/** @brief  Enable CTS flow control
  *         This macro allows to enable CTS hardware flow control for a given UART instance,
  *         without need to call HAL_UART_Init() function.
  *         As involving direct access to UART registers, usage of this macro should be fully endorsed by user.
  * @note   As macro is expected to be used for modifying CTS Hw flow control feature activation, without need
  *         for USART instance Deinit/Init, following conditions for macro call should be fulfilled :
  *           - UART instance should have already been initialised (through call of HAL_UART_Init() )
  *           - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__))
  *             and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)).
  * @param  __HANDLE__: specifies the UART Handle.
  *         The Handle Instance can be USART1, USART2 or LPUART.
  * @retval None
  */
#define __HAL_UART_HWCONTROL_CTS_ENABLE(__HANDLE__)        \
  do{                                                      \
    SET_BIT((__HANDLE__)->Instance->CR3, USART_CR3_CTSE);  \
    (__HANDLE__)->Init.HwFlowCtl |= USART_CR3_CTSE;        \
  } while(0)

/** @brief  Disable CTS flow control
  *         This macro allows to disable CTS hardware flow control for a given UART instance,
  *         without need to call HAL_UART_Init() function.
  *         As involving direct access to UART registers, usage of this macro should be fully endorsed by user.
  * @note   As macro is expected to be used for modifying CTS Hw flow control feature activation, without need
  *         for USART instance Deinit/Init, following conditions for macro call should be fulfilled :
  *           - UART instance should have already been initialised (through call of HAL_UART_Init() )
  *           - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__))
  *             and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)).
  * @param  __HANDLE__: specifies the UART Handle.
  *         The Handle Instance can be USART1, USART2 or LPUART.
  * @retval None
  */
#define __HAL_UART_HWCONTROL_CTS_DISABLE(__HANDLE__)        \
  do{                                                       \
    CLEAR_BIT((__HANDLE__)->Instance->CR3, USART_CR3_CTSE); \
    (__HANDLE__)->Init.HwFlowCtl &= ~(USART_CR3_CTSE);      \
  } while(0)

/** @brief  Enable RTS flow control
  *         This macro allows to enable RTS hardware flow control for a given UART instance,
  *         without need to call HAL_UART_Init() function.
  *         As involving direct access to UART registers, usage of this macro should be fully endorsed by user.
  * @note   As macro is expected to be used for modifying RTS Hw flow control feature activation, without need
  *         for USART instance Deinit/Init, following conditions for macro call should be fulfilled :
  *           - UART instance should have already been initialised (through call of HAL_UART_Init() )
  *           - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__))
  *             and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)).
  * @param  __HANDLE__: specifies the UART Handle.
  *         The Handle Instance can be USART1, USART2 or LPUART.
  * @retval None
  */
#define __HAL_UART_HWCONTROL_RTS_ENABLE(__HANDLE__)       \
  do{                                                     \
    SET_BIT((__HANDLE__)->Instance->CR3, USART_CR3_RTSE); \
    (__HANDLE__)->Init.HwFlowCtl |= USART_CR3_RTSE;       \
  } while(0)

/** @brief  Disable RTS flow control
  *         This macro allows to disable RTS hardware flow control for a given UART instance,
  *         without need to call HAL_UART_Init() function.
  *         As involving direct access to UART registers, usage of this macro should be fully endorsed by user.
  * @note   As macro is expected to be used for modifying RTS Hw flow control feature activation, without need
  *         for USART instance Deinit/Init, following conditions for macro call should be fulfilled :
  *           - UART instance should have already been initialised (through call of HAL_UART_Init() )
  *           - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__))
  *             and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)).
  * @param  __HANDLE__: specifies the UART Handle.
  *         The Handle Instance can be USART1, USART2 or LPUART.
  * @retval None
  */
#define __HAL_UART_HWCONTROL_RTS_DISABLE(__HANDLE__)       \
  do{                                                      \
    CLEAR_BIT((__HANDLE__)->Instance->CR3, USART_CR3_RTSE);\
    (__HANDLE__)->Init.HwFlowCtl &= ~(USART_CR3_RTSE);     \
  } while(0)

/** @brief  macros to enables the UART's one bit sample method
  * @param  __HANDLE__: specifies the UART Handle.
  * @retval None
  */
#define __HAL_UART_ONE_BIT_SAMPLE_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR3|= USART_CR3_ONEBIT)

/** @brief  macros to disables the UART's one bit sample method
  * @param  __HANDLE__: specifies the UART Handle.
  * @retval None
  */
#define __HAL_UART_ONE_BIT_SAMPLE_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR3 &= (uint16_t)~((uint16_t)USART_CR3_ONEBIT))

/** @brief  Enable UART
  * @param  __HANDLE__: specifies the UART Handle.
  * @retval None
  */
#define __HAL_UART_ENABLE(__HANDLE__)               ((__HANDLE__)->Instance->CR1 |=  USART_CR1_UE)

/** @brief  Disable UART
  * @param  __HANDLE__: specifies the UART Handle.
  * @retval None
  */
#define __HAL_UART_DISABLE(__HANDLE__)              ((__HANDLE__)->Instance->CR1 &=  ~USART_CR1_UE)
/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/
/** @addtogroup UART_Exported_Functions
  * @{
  */

/** @addtogroup UART_Exported_Functions_Group1
  * @{
  */
/* Initialization/de-initialization functions  **********************************/
HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength);
HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod);
HAL_StatusTypeDef HAL_UART_DeInit (UART_HandleTypeDef *huart);
void HAL_UART_MspInit(UART_HandleTypeDef *huart);
void HAL_UART_MspDeInit(UART_HandleTypeDef *huart);
/**
  * @}
  */

/** @addtogroup UART_Exported_Functions_Group2
  * @{
  */
/* IO operation functions *******************************************************/
HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart);
void HAL_UART_IRQHandler(UART_HandleTypeDef *huart);
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart);
/**
  * @}
  */

/** @addtogroup UART_Exported_Functions_Group3
  * @{
  */
/* Peripheral Control functions  ************************************************/
HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart);
HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart);
/**
  * @}
  */

/** @addtogroup UART_Exported_Functions_Group4
  * @{
  */
/* Peripheral State functions  **************************************************/
HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart);
uint32_t              HAL_UART_GetError(UART_HandleTypeDef *huart);
/**
  * @}
  */

/**
  * @}
  */
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup UART_Private_Constants UART Private Constants
  * @{
  */
/** @brief UART interruptions flag mask
  *
  */
#define UART_CR1_REG_INDEX               1
#define UART_CR2_REG_INDEX               2
#define UART_CR3_REG_INDEX               3
/**
  * @}
  */

/* Private macros ------------------------------------------------------------*/
/** @defgroup UART_Private_Macros UART Private Macros
  * @{
  */
#define IS_UART_WORD_LENGTH(LENGTH) (((LENGTH) == UART_WORDLENGTH_8B) || \
                                     ((LENGTH) == UART_WORDLENGTH_9B))
#define IS_UART_LIN_WORD_LENGTH(LENGTH) (((LENGTH) == UART_WORDLENGTH_8B))
#define IS_UART_STOPBITS(STOPBITS) (((STOPBITS) == UART_STOPBITS_1) || \
                                    ((STOPBITS) == UART_STOPBITS_2))
#define IS_UART_PARITY(PARITY) (((PARITY) == UART_PARITY_NONE) || \
                                ((PARITY) == UART_PARITY_EVEN) || \
                                ((PARITY) == UART_PARITY_ODD))
#define IS_UART_HARDWARE_FLOW_CONTROL(CONTROL)\
                              (((CONTROL) == UART_HWCONTROL_NONE) || \
                               ((CONTROL) == UART_HWCONTROL_RTS) || \
                               ((CONTROL) == UART_HWCONTROL_CTS) || \
                               ((CONTROL) == UART_HWCONTROL_RTS_CTS))
#define IS_UART_MODE(MODE) ((((MODE) & (uint32_t)0x0000FFF3) == 0x00) && ((MODE) != (uint32_t)0x000000))
#define IS_UART_STATE(STATE) (((STATE) == UART_STATE_DISABLE) || \
                              ((STATE) == UART_STATE_ENABLE))
#define IS_UART_OVERSAMPLING(SAMPLING) (((SAMPLING) == UART_OVERSAMPLING_16) || \
                                        ((SAMPLING) == UART_OVERSAMPLING_8))
#define IS_UART_LIN_OVERSAMPLING(SAMPLING) (((SAMPLING) == UART_OVERSAMPLING_16))
#define IS_UART_LIN_BREAK_DETECT_LENGTH(LENGTH) (((LENGTH) == UART_LINBREAKDETECTLENGTH_10B) || \
                                                 ((LENGTH) == UART_LINBREAKDETECTLENGTH_11B))
#define IS_UART_WAKEUPMETHOD(WAKEUP) (((WAKEUP) == UART_WAKEUPMETHOD_IDLELINE) || \
                                      ((WAKEUP) == UART_WAKEUPMETHOD_ADDRESSMARK))
#define IS_UART_BAUDRATE(BAUDRATE) ((BAUDRATE) < 10500001)
#define IS_UART_ADDRESS(ADDRESS) ((ADDRESS) <= 0xF)

#define UART_DIV_SAMPLING16(_PCLK_, _BAUD_)            (((_PCLK_)*25)/(4*(_BAUD_)))
#define UART_DIVMANT_SAMPLING16(_PCLK_, _BAUD_)        (UART_DIV_SAMPLING16((_PCLK_), (_BAUD_))/100)
#define UART_DIVFRAQ_SAMPLING16(_PCLK_, _BAUD_)        (((UART_DIV_SAMPLING16((_PCLK_), (_BAUD_)) - (UART_DIVMANT_SAMPLING16((_PCLK_), (_BAUD_)) * 100)) * 16 + 50) / 100)
#define UART_BRR_SAMPLING16(_PCLK_, _BAUD_)            ((UART_DIVMANT_SAMPLING16((_PCLK_), (_BAUD_)) << 4)|(UART_DIVFRAQ_SAMPLING16((_PCLK_), (_BAUD_)) & 0x0F))

#define UART_DIV_SAMPLING8(_PCLK_, _BAUD_)             (((_PCLK_)*25)/(2*(_BAUD_)))
#define UART_DIVMANT_SAMPLING8(_PCLK_, _BAUD_)         (UART_DIV_SAMPLING8((_PCLK_), (_BAUD_))/100)
#define UART_DIVFRAQ_SAMPLING8(_PCLK_, _BAUD_)         (((UART_DIV_SAMPLING8((_PCLK_), (_BAUD_)) - (UART_DIVMANT_SAMPLING8((_PCLK_), (_BAUD_)) * 100)) * 16 + 50) / 100)
#define UART_BRR_SAMPLING8(_PCLK_, _BAUD_)             ((UART_DIVMANT_SAMPLING8((_PCLK_), (_BAUD_)) << 4)|(UART_DIVFRAQ_SAMPLING8((_PCLK_), (_BAUD_)) & 0x0F))

/**
  * @}
  */

/* Private functions ---------------------------------------------------------*/
/** @defgroup UART_Private_Functions UART Private Functions
  * @{
  */

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

#ifdef __cplusplus
}
#endif

#endif /* __STM32F4xx_HAL_UART_H */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
#n2571'>2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
/**
  ******************************************************************************
  * @file    stm32f4xx_hal_fmpi2c.c
  * @author  MCD Application Team
  * @version V1.4.1
  * @date    09-October-2015
  * @brief   FMPI2C HAL module driver.
  *    
  *          This file provides firmware functions to manage the following 
  *          functionalities of the Inter Integrated Circuit (FMPI2C) peripheral:
  *           + Initialization and de-initialization functions
  *           + IO operation functions
  *           + Peripheral State functions
  *         
  @verbatim
  ==============================================================================
                        ##### How to use this driver #####
  ==============================================================================
    [..]
    The FMPI2C HAL driver can be used as follows:
    
    (#) Declare a FMPI2C_HandleTypeDef handle structure, for example:
        FMPI2C_HandleTypeDef  hfmpi2c; 

    (#)Initialize the FMPI2C low level resources by implement the HAL_FMPI2C_MspInit ()API:
        (##) Enable the FMPI2Cx interface clock
        (##) FMPI2C pins configuration
            (+++) Enable the clock for the FMPI2C GPIOs
            (+++) Configure FMPI2C pins as alternate function open-drain
        (##) NVIC configuration if you need to use interrupt process
            (+++) Configure the FMPI2Cx interrupt priority
            (+++) Enable the NVIC FMPI2C IRQ Channel
        (##) DMA Configuration if you need to use DMA process
            (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive stream
            (+++) Enable the DMAx interface clock using
            (+++) Configure the DMA handle parameters
            (+++) Configure the DMA Tx or Rx Stream
            (+++) Associate the initilalized DMA handle to the hfmpi2c DMA Tx or Rx handle
            (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx Stream

    (#) Configure the Communication Clock Timing, Own Address1, Master Adressing Mode, Dual Addressing mode,
        Own Address2, Own Address2 Mask, General call and Nostretch mode in the hfmpi2c Init structure.

    (#) Initialize the FMPI2C registers by calling the HAL_FMPI2C_Init() API:
        (+++) These API's configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
            by calling the customed HAL_FMPI2C_MspInit(&hfmpi2c) API.

    (#) To check if target device is ready for communication, use the function HAL_FMPI2C_IsDeviceReady()

    (#) For FMPI2C IO and IO MEM operations, three mode of operations are available within this driver :

    *** Polling mode IO operation ***
    =================================
    [..]
      (+) Transmit in master mode an amount of data in blocking mode using HAL_FMPI2C_Master_Transmit()
      (+) Receive in master mode an amount of data in blocking mode using HAL_FMPI2C_Master_Receive()
      (+) Transmit in slave mode an amount of data in blocking mode using HAL_FMPI2C_Slave_Transmit()
      (+) Receive in slave mode an amount of data in blocking mode using HAL_FMPI2C_Slave_Receive()

    *** Polling mode IO MEM operation ***
    =====================================
    [..]
      (+) Write an amount of data in blocking mode to a specific memory address using HAL_FMPI2C_Mem_Write()
      (+) Read an amount of data in blocking mode from a specific memory address using HAL_FMPI2C_Mem_Read()


    *** Interrupt mode IO operation ***
    ===================================
    [..]
      (+) Transmit in master mode an amount of data in non blocking mode using HAL_FMPI2C_Master_Transmit_IT()
      (+) At transmission end of transfer HAL_FMPI2C_MasterTxCpltCallback is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_MasterTxCpltCallback
      (+) Receive in master mode an amount of data in non blocking mode using HAL_FMPI2C_Master_Receive_IT()
      (+) At reception end of transfer HAL_FMPI2C_MasterRxCpltCallback is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_MasterRxCpltCallback
      (+) Transmit in slave mode an amount of data in non blocking mode using HAL_FMPI2C_Slave_Transmit_IT()
      (+) At transmission end of transfer HAL_FMPI2C_SlaveTxCpltCallback is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_SlaveTxCpltCallback
      (+) Receive in slave mode an amount of data in non blocking mode using HAL_FMPI2C_Slave_Receive_IT()
      (+) At reception end of transfer HAL_FMPI2C_SlaveRxCpltCallback is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_SlaveRxCpltCallback
      (+) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback

    *** Interrupt mode IO MEM operation ***
    =======================================
    [..]
      (+) Write an amount of data in no-blocking mode with Interrupt to a specific memory address using
          HAL_FMPI2C_Mem_Write_IT()
      (+) At MEM end of write transfer HAL_FMPI2C_MemTxCpltCallback is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_MemTxCpltCallback
      (+) Read an amount of data in no-blocking mode with Interrupt from a specific memory address using
          HAL_FMPI2C_Mem_Read_IT()
      (+) At MEM end of read transfer HAL_FMPI2C_MemRxCpltCallback is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_MemRxCpltCallback
      (+) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback

    *** DMA mode IO operation ***
    ==============================
    [..]
      (+) Transmit in master mode an amount of data in non blocking mode (DMA) using
          HAL_FMPI2C_Master_Transmit_DMA()
      (+) At transmission end of transfer HAL_FMPI2C_MasterTxCpltCallback is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_MasterTxCpltCallback
      (+) Receive in master mode an amount of data in non blocking mode (DMA) using
          HAL_FMPI2C_Master_Receive_DMA()
      (+) At reception end of transfer HAL_FMPI2C_MasterRxCpltCallback is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_MasterRxCpltCallback
      (+) Transmit in slave mode an amount of data in non blocking mode (DMA) using
          HAL_FMPI2C_Slave_Transmit_DMA()
      (+) At transmission end of transfer HAL_FMPI2C_SlaveTxCpltCallback is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_SlaveTxCpltCallback
      (+) Receive in slave mode an amount of data in non blocking mode (DMA) using
          HAL_FMPI2C_Slave_Receive_DMA()
      (+) At reception end of transfer HAL_FMPI2C_SlaveRxCpltCallback is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_SlaveRxCpltCallback
      (+) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback

    *** DMA mode IO MEM operation ***
    =================================
    [..]
      (+) Write an amount of data in no-blocking mode with DMA to a specific memory address using
          HAL_FMPI2C_Mem_Write_DMA()
      (+) At MEM end of write transfer HAL_FMPI2C_MemTxCpltCallback is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_MemTxCpltCallback
      (+) Read an amount of data in no-blocking mode with DMA from a specific memory address using
          HAL_FMPI2C_Mem_Read_DMA()
      (+) At MEM end of read transfer HAL_FMPI2C_MemRxCpltCallback is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_MemRxCpltCallback
      (+) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can
           add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback


     *** FMPI2C HAL driver macros list ***
     ==================================
     [..]
       Below the list of most used macros in FMPI2C HAL driver.

      (+) __HAL_FMPI2C_ENABLE: Enable the FMPI2C peripheral
      (+) __HAL_FMPI2C_DISABLE: Disable the FMPI2C peripheral
      (+) __HAL_FMPI2C_GET_FLAG : Checks whether the specified FMPI2C flag is set or not
      (+) __HAL_FMPI2C_CLEAR_FLAG : Clears the specified FMPI2C pending flag
      (+) __HAL_FMPI2C_ENABLE_IT: Enables the specified FMPI2C interrupt
      (+) __HAL_FMPI2C_DISABLE_IT: Disables the specified FMPI2C interrupt

     [..]
       (@) You can refer to the FMPI2C HAL driver header file for more useful macros

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************  
  */ 

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"

/** @addtogroup STM32F4xx_HAL_Driver
  * @{
  */

/** @defgroup FMPI2C FMPI2C
  * @brief FMPI2C HAL module driver
  * @{
  */

#ifdef HAL_FMPI2C_MODULE_ENABLED

#if defined(STM32F410Tx) || defined(STM32F410Cx) || defined(STM32F410Rx) || defined(STM32F446xx) 
    
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup FMPI2C_Private_Constants
  * @{
  */
#define TIMING_CLEAR_MASK       ((uint32_t)0xF0FFFFFF)  /*<! FMPI2C TIMING clear register Mask */
#define FMPI2C_TIMEOUT_ADDR    ((uint32_t)10000)  /* 10 s  */
#define FMPI2C_TIMEOUT_BUSY    ((uint32_t)25)     /* 25 ms */
#define FMPI2C_TIMEOUT_DIR     ((uint32_t)25)     /* 25 ms */
#define FMPI2C_TIMEOUT_RXNE    ((uint32_t)25)     /* 25 ms */
#define FMPI2C_TIMEOUT_STOPF   ((uint32_t)25)     /* 25 ms */
#define FMPI2C_TIMEOUT_TC      ((uint32_t)25)     /* 25 ms */
#define FMPI2C_TIMEOUT_TCR     ((uint32_t)25)     /* 25 ms */
#define FMPI2C_TIMEOUT_TXIS    ((uint32_t)25)     /* 25 ms */
#define FMPI2C_TIMEOUT_FLAG    ((uint32_t)25)     /* 25 ms */
/**
  * @}
  */

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup FMPI2C_Private_Functions
  * @brief    FMPI2C private  functions 
  * @{
  */
static void FMPI2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma);
static void FMPI2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma);
static void FMPI2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma);
static void FMPI2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma);
static void FMPI2C_DMAMemTransmitCplt(DMA_HandleTypeDef *hdma);
static void FMPI2C_DMAMemReceiveCplt(DMA_HandleTypeDef *hdma);
static void FMPI2C_DMAError(DMA_HandleTypeDef *hdma);

static HAL_StatusTypeDef FMPI2C_RequestMemoryWrite(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout);
static HAL_StatusTypeDef FMPI2C_RequestMemoryRead(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout);
static HAL_StatusTypeDef FMPI2C_WaitOnFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
static HAL_StatusTypeDef FMPI2C_WaitOnTXISFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout);
static HAL_StatusTypeDef FMPI2C_WaitOnRXNEFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout);
static HAL_StatusTypeDef FMPI2C_WaitOnSTOPFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout);
static HAL_StatusTypeDef FMPI2C_IsAcknowledgeFailed(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout);

static HAL_StatusTypeDef FMPI2C_MasterTransmit_ISR(FMPI2C_HandleTypeDef *hfmpi2c);
static HAL_StatusTypeDef FMPI2C_MasterReceive_ISR(FMPI2C_HandleTypeDef *hfmpi2c);

static HAL_StatusTypeDef FMPI2C_SlaveTransmit_ISR(FMPI2C_HandleTypeDef *hfmpi2c);
static HAL_StatusTypeDef FMPI2C_SlaveReceive_ISR(FMPI2C_HandleTypeDef *hfmpi2c);

static void FMPI2C_TransferConfig(FMPI2C_HandleTypeDef *hfmpi2c,  uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request);
/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/
/** @defgroup FMPI2C_Exported_Functions FMPI2C Exported Functions
  * @{
  */

/** @defgroup FMPI2C_Exported_Functions_Group1 Initialization and de-initialization functions 
 *  @brief    Initialization and Configuration functions 
 *
@verbatim    
 ===============================================================================
              ##### Initialization and de-initialization functions #####
 ===============================================================================
    [..]  This subsection provides a set of functions allowing to initialize and 
          de-initialiaze the FMPI2Cx peripheral:

      (+) User must Implement HAL_FMPI2C_MspInit() function in which he configures 
          all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).

      (+) Call the function HAL_FMPI2C_Init() to configure the selected device with 
          the selected configuration:
        (++) Clock Timing
        (++) Own Address 1
        (++) Addressing mode (Master, Slave)
        (++) Dual Addressing mode
        (++) Own Address 2
        (++) Own Address 2 Mask
        (++) General call mode
        (++) Nostretch mode

      (+) Call the function HAL_FMPI2C_DeInit() to restore the default configuration 
          of the selected FMPI2Cx periperal.       

@endverbatim
  * @{
  */

/**
  * @brief  Initializes the FMPI2C according to the specified parameters 
  *         in the FMPI2C_InitTypeDef and create the associated handle.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Init(FMPI2C_HandleTypeDef *hfmpi2c)
{ 
  /* Check the FMPI2C handle allocation */
  if(hfmpi2c == NULL)
  {
    return HAL_ERROR;
  }
  
  /* Check the parameters */
  assert_param(IS_FMPI2C_ALL_INSTANCE(hfmpi2c->Instance));
  assert_param(IS_FMPI2C_OWN_ADDRESS1(hfmpi2c->Init.OwnAddress1));
  assert_param(IS_FMPI2C_ADDRESSING_MODE(hfmpi2c->Init.AddressingMode));
  assert_param(IS_FMPI2C_DUAL_ADDRESS(hfmpi2c->Init.DualAddressMode));
  assert_param(IS_FMPI2C_OWN_ADDRESS2(hfmpi2c->Init.OwnAddress2));
  assert_param(IS_FMPI2C_OWN_ADDRESS2_MASK(hfmpi2c->Init.OwnAddress2Masks));
  assert_param(IS_FMPI2C_GENERAL_CALL(hfmpi2c->Init.GeneralCallMode));
  assert_param(IS_FMPI2C_NO_STRETCH(hfmpi2c->Init.NoStretchMode));

  if(hfmpi2c->State == HAL_FMPI2C_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hfmpi2c->Lock = HAL_UNLOCKED;
    /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
    HAL_FMPI2C_MspInit(hfmpi2c);
  }

  hfmpi2c->State = HAL_FMPI2C_STATE_BUSY;
  
  /* Disable the selected FMPI2C peripheral */
  __HAL_FMPI2C_DISABLE(hfmpi2c);
  
  /*---------------------------- FMPI2Cx TIMINGR Configuration ------------------*/
  /* Configure FMPI2Cx: Frequency range */
  hfmpi2c->Instance->TIMINGR = hfmpi2c->Init.Timing & TIMING_CLEAR_MASK;
  
  /*---------------------------- FMPI2Cx OAR1 Configuration ---------------------*/
  /* Configure FMPI2Cx: Own Address1 and ack own address1 mode */
  hfmpi2c->Instance->OAR1 &= ~FMPI2C_OAR1_OA1EN;
  if(hfmpi2c->Init.OwnAddress1 != 0)
  {
    if(hfmpi2c->Init.AddressingMode == FMPI2C_ADDRESSINGMODE_7BIT)
    {
      hfmpi2c->Instance->OAR1 = (FMPI2C_OAR1_OA1EN | hfmpi2c->Init.OwnAddress1);
    }
    else /* FMPI2C_ADDRESSINGMODE_10BIT */
    {
      hfmpi2c->Instance->OAR1 = (FMPI2C_OAR1_OA1EN | FMPI2C_OAR1_OA1MODE | hfmpi2c->Init.OwnAddress1);
    }
  }
  
  /*---------------------------- FMPI2Cx CR2 Configuration ----------------------*/
  /* Configure FMPI2Cx: Addressing Master mode */
  if(hfmpi2c->Init.AddressingMode == FMPI2C_ADDRESSINGMODE_10BIT)
  {
    hfmpi2c->Instance->CR2 = (FMPI2C_CR2_ADD10);
  }
  /* Enable the AUTOEND by default, and enable NACK (should be disable only during Slave process */
  hfmpi2c->Instance->CR2 |= (FMPI2C_CR2_AUTOEND | FMPI2C_CR2_NACK);
  
  /*---------------------------- FMPI2Cx OAR2 Configuration ---------------------*/
  /* Configure FMPI2Cx: Dual mode and Own Address2 */
  hfmpi2c->Instance->OAR2 = (hfmpi2c->Init.DualAddressMode | hfmpi2c->Init.OwnAddress2 | (hfmpi2c->Init.OwnAddress2Masks << 8));

  /*---------------------------- FMPI2Cx CR1 Configuration ----------------------*/
  /* Configure FMPI2Cx: Generalcall and NoStretch mode */
  hfmpi2c->Instance->CR1 = (hfmpi2c->Init.GeneralCallMode | hfmpi2c->Init.NoStretchMode);
  
  /* Enable the selected FMPI2C peripheral */
  __HAL_FMPI2C_ENABLE(hfmpi2c);
  
  hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
  hfmpi2c->State = HAL_FMPI2C_STATE_READY;
  
  return HAL_OK;
}

/**
  * @brief  DeInitializes the FMPI2C peripheral. 
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_DeInit(FMPI2C_HandleTypeDef *hfmpi2c)
{
  /* Check the FMPI2C handle allocation */
  if(hfmpi2c == NULL)
  {
    return HAL_ERROR;
  }
  
  /* Check the parameters */
  assert_param(IS_FMPI2C_ALL_INSTANCE(hfmpi2c->Instance));
  
  hfmpi2c->State = HAL_FMPI2C_STATE_BUSY;
  
  /* Disable the FMPI2C Peripheral Clock */
  __HAL_FMPI2C_DISABLE(hfmpi2c);
  
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
  HAL_FMPI2C_MspDeInit(hfmpi2c);
  
  hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
  hfmpi2c->State = HAL_FMPI2C_STATE_RESET;
  
  /* Release Lock */
  __HAL_UNLOCK(hfmpi2c);

  return HAL_OK;
}

/**
  * @brief FMPI2C MSP Init.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval None
  */
 __weak void HAL_FMPI2C_MspInit(FMPI2C_HandleTypeDef *hfmpi2c)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_FMPI2C_MspInit could be implemented in the user file
   */ 
}

/**
  * @brief FMPI2C MSP DeInit
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval None
  */
 __weak void HAL_FMPI2C_MspDeInit(FMPI2C_HandleTypeDef *hfmpi2c)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_FMPI2C_MspDeInit could be implemented in the user file
   */ 
}

/**
  * @}
  */

/** @defgroup FMPI2C_Exported_Functions_Group2 I/O operation functions 
 *  @brief   Data transfers functions 
 *
@verbatim   
 ===============================================================================
                      ##### IO operation functions #####
 ===============================================================================  
    [..]
    This subsection provides a set of functions allowing to manage the FMPI2C data 
    transfers.

    (#) There is two mode of transfer:
       (++) Blocking mode : The communication is performed in the polling mode. 
            The status of all data processing is returned by the same function 
            after finishing transfer.  
       (++) No-Blocking mode : The communication is performed using Interrupts 
            or DMA. These functions return the status of the transfer startup.
            The end of the data processing will be indicated through the 
            dedicated FMPI2C IRQ when using Interrupt mode or the DMA IRQ when 
            using DMA mode.

    (#) Blocking mode functions are :
        (++) HAL_FMPI2C_Master_Transmit()
        (++) HAL_FMPI2C_Master_Receive()
        (++) HAL_FMPI2C_Slave_Transmit()
        (++) HAL_FMPI2C_Slave_Receive()
        (++) HAL_FMPI2C_Mem_Write()
        (++) HAL_FMPI2C_Mem_Read()
        (++) HAL_FMPI2C_IsDeviceReady()
        
    (#) No-Blocking mode functions with Interrupt are :
        (++) HAL_FMPI2C_Master_Transmit_IT()
        (++) HAL_FMPI2C_Master_Receive_IT()
        (++) HAL_FMPI2C_Slave_Transmit_IT()
        (++) HAL_FMPI2C_Slave_Receive_IT()
        (++) HAL_FMPI2C_Mem_Write_IT()
        (++) HAL_FMPI2C_Mem_Read_IT()

    (#) No-Blocking mode functions with DMA are :
        (++) HAL_FMPI2C_Master_Transmit_DMA()
        (++) HAL_FMPI2C_Master_Receive_DMA()
        (++) HAL_FMPI2C_Slave_Transmit_DMA()
        (++) HAL_FMPI2C_Slave_Receive_DMA()
        (++) HAL_FMPI2C_Mem_Write_DMA()
        (++) HAL_FMPI2C_Mem_Read_DMA()

    (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode:
        (++) HAL_FMPI2C_MemTxCpltCallback()
        (++) HAL_FMPI2C_MemRxCpltCallback()
        (++) HAL_FMPI2C_MasterTxCpltCallback()
        (++) HAL_FMPI2C_MasterRxCpltCallback()
        (++) HAL_FMPI2C_SlaveTxCpltCallback()
        (++) HAL_FMPI2C_SlaveRxCpltCallback()
        (++) HAL_FMPI2C_ErrorCallback()

@endverbatim
  * @{
  */

/**
  * @brief  Transmits in master mode an amount of data in blocking mode.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Master_Transmit(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  uint32_t sizetmp = 0;

  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {    
    if((pData == NULL ) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_MASTER_BUSY_TX;
    hfmpi2c->ErrorCode   = HAL_FMPI2C_ERROR_NONE;
    
    /* Send Slave Address */
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
    /* Size > 255, need to set RELOAD bit */
    if(Size > 255)
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_WRITE);
      sizetmp = 255;
    }
    else
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_WRITE);
      sizetmp = Size;
    }
      
    do
    {
      /* Wait until TXIS flag is set */
      if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK)
      {
        if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
        {
          return HAL_ERROR;
        }
        else
        {
          return HAL_TIMEOUT;
        }
      }
      /* Write data to TXDR */
      hfmpi2c->Instance->TXDR = (*pData++);
      sizetmp--;
      Size--;

      if((sizetmp == 0)&&(Size!=0))
      {
        /* Wait until TXE flag is set */
        if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout) != HAL_OK)      
        {
          return HAL_TIMEOUT;
        }
        
        if(Size > 255)
        {
          FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
          sizetmp = 255;
        }
        else
        {
          FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
          sizetmp = Size;
        }
      }

    }while(Size > 0);
    
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
    /* Wait until STOPF flag is set */
    if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        return HAL_ERROR;
      }
      else
      {
        return HAL_TIMEOUT;
      }
    }
    
    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
  	
    /* Clear Configuration Register 2 */
    __HAL_FMPI2C_RESET_CR2(hfmpi2c);

    hfmpi2c->State = HAL_FMPI2C_STATE_READY; 	  
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}

/**
  * @brief  Receives in master mode an amount of data in blocking mode. 
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Master_Receive(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  uint32_t sizetmp = 0;

  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {    
    if((pData == NULL ) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_MASTER_BUSY_RX;
    hfmpi2c->ErrorCode   = HAL_FMPI2C_ERROR_NONE;
    
    /* Send Slave Address */
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
    /* Size > 255, need to set RELOAD bit */
    if(Size > 255)
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_READ);
      sizetmp = 255;
    }
    else
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_READ);
      sizetmp = Size;
    }
    
    do
    {
      /* Wait until RXNE flag is set */
      if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, Timeout) != HAL_OK)      
      {
        return HAL_TIMEOUT;
      }
     
      /* Write data to RXDR */
      (*pData++) =hfmpi2c->Instance->RXDR;
      sizetmp--;
      Size--;

      if((sizetmp == 0)&&(Size!=0))
      {
        /* Wait until TCR flag is set */
        if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout) != HAL_OK)      
        {
          return HAL_TIMEOUT;
        }
        
        if(Size > 255)
        {
          FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
          sizetmp = 255;
        }
        else
        {
          FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
          sizetmp = Size;
        }
      }

    }while(Size > 0);
    
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
    /* Wait until STOPF flag is set */
    if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        return HAL_ERROR;
      }
      else
      {
        return HAL_TIMEOUT;
      }
    }
    
    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
  	
    /* Clear Configuration Register 2 */
    __HAL_FMPI2C_RESET_CR2(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_READY; 	  
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}

/**
  * @brief  Transmits in slave mode an amount of data in blocking mode. 
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Slave_Transmit(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {    
    if((pData == NULL ) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_SLAVE_BUSY_RX;
    hfmpi2c->ErrorCode   = HAL_FMPI2C_ERROR_NONE;
    
    /* Enable Address Acknowledge */
    hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK;

    /* Wait until ADDR flag is set */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, Timeout) != HAL_OK)      
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
      return HAL_TIMEOUT;
    }
    
    /* Clear ADDR flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_ADDR);

    /* If 10bit addressing mode is selected */
    if(hfmpi2c->Init.AddressingMode == FMPI2C_ADDRESSINGMODE_10BIT)
    {
      /* Wait until ADDR flag is set */
      if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, Timeout) != HAL_OK)      
      {
        /* Disable Address Acknowledge */
        hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
        return HAL_TIMEOUT;
      }
    
      /* Clear ADDR flag */
      __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_ADDR);
    }

    /* Wait until DIR flag is set Transmitter mode */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_DIR, RESET, Timeout) != HAL_OK)      
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
      return HAL_TIMEOUT;
    }

    do
    {
      /* Wait until TXIS flag is set */
      if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK)
      {
        /* Disable Address Acknowledge */
        hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;

        if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
        {
          return HAL_ERROR;
        }
        else
        {
          return HAL_TIMEOUT;
        }
      }
      
      /* Read data from TXDR */
      hfmpi2c->Instance->TXDR = (*pData++);
      Size--;
    }while(Size > 0);
    
    /* Wait until STOP flag is set */
    if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;

      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
	/* Normal use case for Transmitter mode */
	/* A NACK is generated to confirm the end of transfer */
	hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
      }
      else
      {
        return HAL_TIMEOUT;
      }
    }
    
    /* Clear STOP flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_STOPF);
    
    /* Wait until BUSY flag is reset */ 
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, Timeout) != HAL_OK)      
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
      return HAL_TIMEOUT;
    }
    
    /* Disable Address Acknowledge */
    hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;

    hfmpi2c->State = HAL_FMPI2C_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}

/**
  * @brief  Receive in slave mode an amount of data in blocking mode 
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Slave_Receive(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {  
    if((pData == NULL ) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_SLAVE_BUSY_RX;
    hfmpi2c->ErrorCode   = HAL_FMPI2C_ERROR_NONE;
    
    /* Enable Address Acknowledge */
    hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK;

    /* Wait until ADDR flag is set */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, Timeout) != HAL_OK)      
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
      return HAL_TIMEOUT;
    }

    /* Clear ADDR flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_ADDR);
    
    /* Wait until DIR flag is reset Receiver mode */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_DIR, SET, Timeout) != HAL_OK)      
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
      return HAL_TIMEOUT;
    }

    while(Size > 0)
    {
      /* Wait until RXNE flag is set */
      if(FMPI2C_WaitOnRXNEFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK)      
      {
        /* Disable Address Acknowledge */
        hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
        if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_TIMEOUT)
        {
          return HAL_TIMEOUT;
        }
        else
        {
          return HAL_ERROR;
        }
      }
      
      /* Read data from RXDR */
      (*pData++) = hfmpi2c->Instance->RXDR;
      Size--;
    }
    
    /* Wait until STOP flag is set */
    if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;

      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        return HAL_ERROR;
      }
      else
      {
        return HAL_TIMEOUT;
      }
    }

    /* Clear STOP flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_STOPF);
    
    /* Wait until BUSY flag is reset */ 
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, Timeout) != HAL_OK)      
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
      return HAL_TIMEOUT;
    }

    
    /* Disable Address Acknowledge */
    hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
    
    hfmpi2c->State = HAL_FMPI2C_STATE_READY;

    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  } 
}

/**
  * @brief  Transmit in master mode an amount of data in no-blocking mode with Interrupt
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Master_Transmit_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size)
{   
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_MASTER_BUSY_TX;
    hfmpi2c->ErrorCode   = HAL_FMPI2C_ERROR_NONE;
    
    hfmpi2c->pBuffPtr = pData;
    hfmpi2c->XferCount = Size;
    if(Size > 255)
    {
      hfmpi2c->XferSize = 255;
    }
    else
    {
      hfmpi2c->XferSize = Size;
    }
    
    /* Send Slave Address */
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
    if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_WRITE);
    }
    else
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_WRITE);
    }
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c); 

    /* Note : The FMPI2C interrupts must be enabled after unlocking current process 
              to avoid the risk of FMPI2C interrupt handle execution before current
              process unlock */


    /* Enable ERR, TC, STOP, NACK, TXI interrupt */
    /* possible to enable all of these */
    /* FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
    __HAL_FMPI2C_ENABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_TXI );
        
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  } 
}

/**
  * @brief  Receive in master mode an amount of data in no-blocking mode with Interrupt
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Master_Receive_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size)
{
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_MASTER_BUSY_RX;
    hfmpi2c->ErrorCode   = HAL_FMPI2C_ERROR_NONE;
    
    hfmpi2c->pBuffPtr = pData;
    hfmpi2c->XferCount = Size;
    if(Size > 255)
    {
      hfmpi2c->XferSize = 255;
    }
    else
    {
      hfmpi2c->XferSize = Size;
    }
    
    /* Send Slave Address */
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
    if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_READ);
    }
    else
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_READ);
    }
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c); 

    /* Note : The FMPI2C interrupts must be enabled after unlocking current process 
              to avoid the risk of FMPI2C interrupt handle execution before current
              process unlock */
    
    /* Enable ERR, TC, STOP, NACK, RXI interrupt */
    /* possible to enable all of these */
    /* FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
    __HAL_FMPI2C_ENABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI | FMPI2C_IT_RXI );
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  } 
}

/**
  * @brief  Transmit in slave mode an amount of data in no-blocking mode with Interrupt 
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Slave_Transmit_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size)
{
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_SLAVE_BUSY_TX;
    hfmpi2c->ErrorCode   = HAL_FMPI2C_ERROR_NONE;
    
    /* Enable Address Acknowledge */
    hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK;

    hfmpi2c->pBuffPtr = pData;
    hfmpi2c->XferSize = Size;
    hfmpi2c->XferCount = Size;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c); 

    /* Note : The FMPI2C interrupts must be enabled after unlocking current process 
              to avoid the risk of FMPI2C interrupt handle execution before current
              process unlock */
    
    /* Enable ERR, TC, STOP, NACK, TXI interrupt */
    /* possible to enable all of these */
    /* FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
    __HAL_FMPI2C_ENABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI | FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_TXI );
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  } 
}

/**
  * @brief  Receive in slave mode an amount of data in no-blocking mode with Interrupt 
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Slave_Receive_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size)
{
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_SLAVE_BUSY_RX;
    hfmpi2c->ErrorCode   = HAL_FMPI2C_ERROR_NONE;
    
    /* Enable Address Acknowledge */
    hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK;

    hfmpi2c->pBuffPtr = pData;
    hfmpi2c->XferSize = Size;
    hfmpi2c->XferCount = Size;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c); 

    /* Note : The FMPI2C interrupts must be enabled after unlocking current process 
              to avoid the risk of FMPI2C interrupt handle execution before current
              process unlock */
    
    /* Enable ERR, TC, STOP, NACK, RXI interrupt */
    /* possible to enable all of these */
    /* FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
    __HAL_FMPI2C_ENABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }
}

/**
  * @brief  Transmit in master mode an amount of data in no-blocking mode with DMA
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Master_Transmit_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size)
{
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }     

    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_MASTER_BUSY_TX;
    hfmpi2c->ErrorCode   = HAL_FMPI2C_ERROR_NONE;
    
    hfmpi2c->pBuffPtr = pData;
    hfmpi2c->XferCount = Size;
    if(Size > 255)
    {
      hfmpi2c->XferSize = 255;
    }
    else
    {
      hfmpi2c->XferSize = Size;
    }
    
    /* Set the FMPI2C DMA transfer complete callback */
    hfmpi2c->hdmatx->XferCpltCallback = FMPI2C_DMAMasterTransmitCplt;
    
    /* Set the DMA error callback */
    hfmpi2c->hdmatx->XferErrorCallback = FMPI2C_DMAError;
    
    /* Enable the DMA channel */
    HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)pData, (uint32_t)&hfmpi2c->Instance->TXDR, hfmpi2c->XferSize);
    
    /* Send Slave Address */
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
    if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_WRITE);
    }
    else
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_WRITE);
    }  

    /* Wait until TXIS flag is set */
    if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_TXIS) != HAL_OK)
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;

      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        return HAL_ERROR;
      }
      else
      {
        return HAL_TIMEOUT;
      }
    }

    
    /* Enable DMA Request */
    hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN;   
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Receive in master mode an amount of data in no-blocking mode with DMA 
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Master_Receive_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size)
{
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }  

    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_MASTER_BUSY_RX;
    hfmpi2c->ErrorCode   = HAL_FMPI2C_ERROR_NONE;
    
    hfmpi2c->pBuffPtr = pData;
    hfmpi2c->XferCount = Size;
    if(Size > 255)
    {
      hfmpi2c->XferSize = 255;
    }
    else
    {
      hfmpi2c->XferSize = Size;
    }
    
    /* Set the FMPI2C DMA transfer complete callback */
    hfmpi2c->hdmarx->XferCpltCallback = FMPI2C_DMAMasterReceiveCplt;
    
    /* Set the DMA error callback */
    hfmpi2c->hdmarx->XferErrorCallback = FMPI2C_DMAError;
    
    /* Enable the DMA channel */
    HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)pData, hfmpi2c->XferSize);
    
    /* Send Slave Address */
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
    if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_READ);
    }
    else
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_READ);
    }

    /* Wait until RXNE flag is set */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, FMPI2C_TIMEOUT_RXNE) != HAL_OK)      
    {
      return HAL_TIMEOUT;
    }

    
    /* Enable DMA Request */
    hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN;   
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Transmit in slave mode an amount of data in no-blocking mode with DMA 
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Slave_Transmit_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size)
{
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }   
    /* Process Locked */
    __HAL_LOCK(hfmpi2c); 
    
    hfmpi2c->State = HAL_FMPI2C_STATE_SLAVE_BUSY_TX;
    hfmpi2c->ErrorCode   = HAL_FMPI2C_ERROR_NONE;
    
    hfmpi2c->pBuffPtr = pData;
    hfmpi2c->XferCount = Size;
    hfmpi2c->XferSize = Size;
    
    /* Set the FMPI2C DMA transfer complete callback */
    hfmpi2c->hdmatx->XferCpltCallback = FMPI2C_DMASlaveTransmitCplt;
    
    /* Set the DMA error callback */
    hfmpi2c->hdmatx->XferErrorCallback = FMPI2C_DMAError;
    
    /* Enable the DMA channel */
    HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)pData, (uint32_t)&hfmpi2c->Instance->TXDR, hfmpi2c->XferSize);
    
    /* Enable Address Acknowledge */
    hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK;

    /* Wait until ADDR flag is set */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, FMPI2C_TIMEOUT_ADDR) != HAL_OK)      
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
      return HAL_TIMEOUT;
    }

    /* Clear ADDR flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_ADDR);
    
    /* If 10bits addressing mode is selected */
    if(hfmpi2c->Init.AddressingMode == FMPI2C_ADDRESSINGMODE_10BIT)
    {
      /* Wait until ADDR flag is set */
      if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, FMPI2C_TIMEOUT_ADDR) != HAL_OK)      
      {
        /* Disable Address Acknowledge */
        hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
        return HAL_TIMEOUT;
      }

      /* Clear ADDR flag */
      __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_ADDR);
    }
    
    /* Wait until DIR flag is set Transmitter mode */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_DIR, RESET, FMPI2C_TIMEOUT_BUSY) != HAL_OK)      
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
      return HAL_TIMEOUT;
    }
      
    /* Enable DMA Request */
    hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN; 
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Receive in slave mode an amount of data in no-blocking mode with DMA 
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Slave_Receive_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size)
{
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }   
    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_SLAVE_BUSY_RX;
    hfmpi2c->ErrorCode   = HAL_FMPI2C_ERROR_NONE;
    
    hfmpi2c->pBuffPtr = pData;
    hfmpi2c->XferSize = Size;
    hfmpi2c->XferCount = Size;
    
    /* Set the FMPI2C DMA transfer complete callback */
    hfmpi2c->hdmarx->XferCpltCallback = FMPI2C_DMASlaveReceiveCplt;
    
    /* Set the DMA error callback */
    hfmpi2c->hdmarx->XferErrorCallback = FMPI2C_DMAError;
    
    /* Enable the DMA channel */
    HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)pData, Size);
    
    /* Enable Address Acknowledge */
    hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK;

    /* Wait until ADDR flag is set */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, FMPI2C_TIMEOUT_ADDR) != HAL_OK)      
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
      return HAL_TIMEOUT;
    }

    /* Clear ADDR flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_ADDR);
    
    /* Wait until DIR flag is set Receiver mode */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_DIR, SET, FMPI2C_TIMEOUT_DIR) != HAL_OK)      
    {
      /* Disable Address Acknowledge */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
      return HAL_TIMEOUT;
    }
 
    /* Enable DMA Request */
    hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN;  
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}
/**
  * @brief  Write an amount of data in blocking mode to a specific memory address
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  MemAddress: Internal memory address
  * @param  MemAddSize: Size of internal memory address
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Mem_Write(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  uint32_t Sizetmp = 0;

  /* Check the parameters */
  assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize));
  
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  { 
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }

    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_MEM_BUSY_TX;
    hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
    
    /* Send Slave Address and Memory Address */
    if(FMPI2C_RequestMemoryWrite(hfmpi2c, DevAddress, MemAddress, MemAddSize, Timeout) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        return HAL_ERROR;
      }
      else
      {
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        return HAL_TIMEOUT;
      }
    }

    /* Set NBYTES to write and reload if size > 255 */
    /* Size > 255, need to set RELOAD bit */
    if(Size > 255)
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
      Sizetmp = 255;
    }
    else
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
      Sizetmp = Size;
    }
    
    do
    {
      /* Wait until TXIS flag is set */
      if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK)
      {
        if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
        {
          return HAL_ERROR;
        }
        else
        {
          return HAL_TIMEOUT;
        }
      }
     
      /* Write data to DR */
      hfmpi2c->Instance->TXDR = (*pData++);
      Sizetmp--;
      Size--;

      if((Sizetmp == 0)&&(Size!=0))
      {
        /* Wait until TCR flag is set */
        if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout) != HAL_OK)      
        {
          return HAL_TIMEOUT;
        }

        
        if(Size > 255)
        {
          FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
          Sizetmp = 255;
        }
        else
        {
          FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
          Sizetmp = Size;
        }
      }
      
    }while(Size > 0);
    
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
    /* Wait until STOPF flag is reset */ 
    if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        return HAL_ERROR;
      }
      else
      {
        return HAL_TIMEOUT;
      }
    }
    
    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
  	
    /* Clear Configuration Register 2 */
    __HAL_FMPI2C_RESET_CR2(hfmpi2c);

    hfmpi2c->State = HAL_FMPI2C_STATE_READY; 	  
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Read an amount of data in blocking mode from a specific memory address
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  MemAddress: Internal memory address
  * @param  MemAddSize: Size of internal memory address
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Mem_Read(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  uint32_t Sizetmp = 0;

  /* Check the parameters */
  assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize));
  
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {    
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }

    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_MEM_BUSY_RX;
    hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
    
    /* Send Slave Address and Memory Address */
    if(FMPI2C_RequestMemoryRead(hfmpi2c, DevAddress, MemAddress, MemAddSize, Timeout) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        return HAL_ERROR;
      }
      else
      {
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        return HAL_TIMEOUT;
      }
    }

    /* Send Slave Address */
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
    /* Size > 255, need to set RELOAD bit */
    if(Size > 255)
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_READ);
      Sizetmp = 255;
    }
    else
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_READ);
      Sizetmp = Size;
    }
    
    do
    {  
      /* Wait until RXNE flag is set */
      if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, Timeout) != HAL_OK)      
      {
        return HAL_TIMEOUT;
      }
          
      /* Read data from RXDR */
      (*pData++) = hfmpi2c->Instance->RXDR;

      /* Decrement the Size counter */
      Sizetmp--;
      Size--;   

      if((Sizetmp == 0)&&(Size!=0))
      {
        /* Wait until TCR flag is set */
        if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout) != HAL_OK)      
        {
          return HAL_TIMEOUT;
        }
        
        if(Size > 255)
        {
          FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
          Sizetmp = 255;
        }
        else
        {
          FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
          Sizetmp = Size;
        }
      }

    }while(Size > 0);

    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
    /* Wait until STOPF flag is reset */ 
    if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        return HAL_ERROR;
      }
      else
      {
        return HAL_TIMEOUT;
      }
    }

    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
  	
    /* Clear Configuration Register 2 */
    __HAL_FMPI2C_RESET_CR2(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}
/**
  * @brief  Write an amount of data in no-blocking mode with Interrupt to a specific memory address
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  MemAddress: Internal memory address
  * @param  MemAddSize: Size of internal memory address
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Mem_Write_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
{
  /* Check the parameters */
  assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize));
  
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_MEM_BUSY_TX;
    hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
    
    hfmpi2c->pBuffPtr = pData;
    hfmpi2c->XferCount = Size;
    if(Size > 255)
    {
      hfmpi2c->XferSize = 255;
    }
    else
    {
      hfmpi2c->XferSize = Size;
    }
    
    /* Send Slave Address and Memory Address */
    if(FMPI2C_RequestMemoryWrite(hfmpi2c, DevAddress, MemAddress, MemAddSize, FMPI2C_TIMEOUT_FLAG) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        return HAL_ERROR;
      }
      else
      {
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        return HAL_TIMEOUT;
      }
    }

    /* Set NBYTES to write and reload if size > 255 */
    /* Size > 255, need to set RELOAD bit */
    if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
    }
    else
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
    }  

    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c); 

    /* Note : The FMPI2C interrupts must be enabled after unlocking current process 
              to avoid the risk of FMPI2C interrupt handle execution before current
              process unlock */
    
    /* Enable ERR, TC, STOP, NACK, TXI interrupt */
    /* possible to enable all of these */
    /* FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
    __HAL_FMPI2C_ENABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_TXI );
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Read an amount of data in no-blocking mode with Interrupt from a specific memory address
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  MemAddress: Internal memory address
  * @param  MemAddSize: Size of internal memory address
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Mem_Read_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
{
  /* Check the parameters */
  assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize));
  
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_MEM_BUSY_RX;
    
    hfmpi2c->pBuffPtr = pData;
    hfmpi2c->XferCount = Size;
    if(Size > 255)
    {
      hfmpi2c->XferSize = 255;
    }
    else
    {
      hfmpi2c->XferSize = Size;
    }
    
    /* Send Slave Address and Memory Address */
    if(FMPI2C_RequestMemoryRead(hfmpi2c, DevAddress, MemAddress, MemAddSize, FMPI2C_TIMEOUT_FLAG) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        return HAL_ERROR;
      }
      else
      {
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        return HAL_TIMEOUT;
      }
    }
      
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
    /* Size > 255, need to set RELOAD bit */
    if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_READ);
    }
    else
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_READ);
    }

    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c); 

    /* Note : The FMPI2C interrupts must be enabled after unlocking current process 
              to avoid the risk of FMPI2C interrupt handle execution before current
              process unlock */
    
    /* Enable ERR, TC, STOP, NACK, RXI interrupt */
    /* possible to enable all of these */
    /* FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */
    __HAL_FMPI2C_ENABLE_IT(hfmpi2c, FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_RXI );
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY; 
  }   
}
/**
  * @brief  Write an amount of data in no-blocking mode with DMA to a specific memory address
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  MemAddress: Internal memory address
  * @param  MemAddSize: Size of internal memory address
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Mem_Write_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
{
  /* Check the parameters */
  assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize));
  
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }
    
    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_MEM_BUSY_TX;
    hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
    
    hfmpi2c->pBuffPtr = pData;
    hfmpi2c->XferCount = Size;
    if(Size > 255)
    {
      hfmpi2c->XferSize = 255;
    }
    else
    {
      hfmpi2c->XferSize = Size;
    }
    
    /* Set the FMPI2C DMA transfer complete callback */
    hfmpi2c->hdmatx->XferCpltCallback = FMPI2C_DMAMemTransmitCplt;
    
    /* Set the DMA error callback */
    hfmpi2c->hdmatx->XferErrorCallback = FMPI2C_DMAError;
    
    /* Enable the DMA channel */
    HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)pData, (uint32_t)&hfmpi2c->Instance->TXDR, hfmpi2c->XferSize);
    
    /* Send Slave Address and Memory Address */
    if(FMPI2C_RequestMemoryWrite(hfmpi2c, DevAddress, MemAddress, MemAddSize, FMPI2C_TIMEOUT_FLAG) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        return HAL_ERROR;
      }
      else
      {
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        return HAL_TIMEOUT;
      }
    }
    
    /* Send Slave Address */
    /* Set NBYTES to write and reload if size > 255 */
    if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
    }
    else
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
    }
    
    /* Wait until TXIS flag is set */
    if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_TXIS) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        return HAL_ERROR;
      }
      else
      {
        return HAL_TIMEOUT;
      }
    }

    /* Enable DMA Request */
    hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN;  
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Reads an amount of data in no-blocking mode with DMA from a specific memory address.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  MemAddress: Internal memory address
  * @param  MemAddSize: Size of internal memory address
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be read
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_Mem_Read_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size)
{
  /* Check the parameters */
  assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize));
  
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if((pData == NULL) || (Size == 0)) 
    {
      return  HAL_ERROR;                                    
    }

    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_MEM_BUSY_RX;
    
    hfmpi2c->pBuffPtr = pData;
    hfmpi2c->XferCount = Size;
    if(Size > 255)
    {
      hfmpi2c->XferSize = 255;
    }
    else
    {
      hfmpi2c->XferSize = Size;
    }

    /* Set the FMPI2C DMA transfer complete callback */
    hfmpi2c->hdmarx->XferCpltCallback = FMPI2C_DMAMemReceiveCplt;
    
    /* Set the DMA error callback */
    hfmpi2c->hdmarx->XferErrorCallback = FMPI2C_DMAError;
    
    /* Enable the DMA channel */
    HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)pData, hfmpi2c->XferSize);
    
    /* Send Slave Address and Memory Address */
    if(FMPI2C_RequestMemoryRead(hfmpi2c, DevAddress, MemAddress, MemAddSize, FMPI2C_TIMEOUT_FLAG) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        return HAL_ERROR;
      }
      else
      {
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        return HAL_TIMEOUT;
      }
    }
    
    /* Set NBYTES to write and reload if size > 255 and generate RESTART */
    if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_READ);
    }
    else
    {
      FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_READ);
    }

    /* Wait until RXNE flag is set */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, FMPI2C_TIMEOUT_RXNE) != HAL_OK)      
    {
      return HAL_TIMEOUT;
    }
    
    /* Enable DMA Request */
    hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN;  
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Checks if target device is ready for communication. 
  * @note   This function is used with Memory devices
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  Trials: Number of trials
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_FMPI2C_IsDeviceReady(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout)
{  
  uint32_t tickstart = 0;
  
  __IO uint32_t FMPI2C_Trials = 0;
 
  if(hfmpi2c->State == HAL_FMPI2C_STATE_READY)
  {
    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET)
    {
      return HAL_BUSY;
    }

    /* Process Locked */
    __HAL_LOCK(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_BUSY;
    hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
    
    do
    {
      /* Generate Start */
      hfmpi2c->Instance->CR2 = __HAL_FMPI2C_GENERATE_START(hfmpi2c->Init.AddressingMode,DevAddress);
      
      /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
      /* Wait until STOPF flag is set or a NACK flag is set*/
      tickstart = HAL_GetTick();
      while((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == RESET) && (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == RESET) && (hfmpi2c->State != HAL_FMPI2C_STATE_TIMEOUT))
      {
      	if(Timeout != HAL_MAX_DELAY)
      	{
          if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
          {
            /* Device is ready */
            hfmpi2c->State = HAL_FMPI2C_STATE_READY;
            /* Process Unlocked */
            __HAL_UNLOCK(hfmpi2c);         
            return HAL_TIMEOUT;
          }
        } 
      }
      
      /* Check if the NACKF flag has not been set */
      if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == RESET)
      {
        /* Wait until STOPF flag is reset */ 
        if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_STOPF, RESET, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        
        /* Clear STOP Flag */
        __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);

        /* Device is ready */
        hfmpi2c->State = HAL_FMPI2C_STATE_READY;
        
        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);
        
        return HAL_OK;
      }
      else
      {
        /* Wait until STOPF flag is reset */ 
        if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_STOPF, RESET, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }

        /* Clear NACK Flag */
        __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF);

        /* Clear STOP Flag, auto generated with autoend*/
        __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
      }
      
      /* Check if the maximum allowed number of trials has been reached */
      if (FMPI2C_Trials++ == Trials)
      {
        /* Generate Stop */
        hfmpi2c->Instance->CR2 |= FMPI2C_CR2_STOP;
        
        /* Wait until STOPF flag is reset */ 
        if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_STOPF, RESET, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        
        /* Clear STOP Flag */
        __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
      }      
    }while(FMPI2C_Trials < Trials);

    hfmpi2c->State = HAL_FMPI2C_STATE_READY;

    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
        
    return HAL_TIMEOUT;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  This function handles FMPI2C event interrupt request.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval None
  */
void HAL_FMPI2C_EV_IRQHandler(FMPI2C_HandleTypeDef *hfmpi2c)
{
  /* FMPI2C in mode Transmitter ---------------------------------------------------*/
  if (((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TXIS) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TCR) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TC) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR) == SET)) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, (FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI | FMPI2C_IT_TXI | FMPI2C_IT_ADDRI)) == SET))
  {     
    /* Slave mode selected */
    if (hfmpi2c->State == HAL_FMPI2C_STATE_SLAVE_BUSY_TX)
    {
      FMPI2C_SlaveTransmit_ISR(hfmpi2c);
    }
  }
    
  if (((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TXIS) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TCR) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TC) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET)) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, (FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI | FMPI2C_IT_TXI)) == SET))
  {     
    /* Master mode selected */
    if ((hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_TX) || (hfmpi2c->State == HAL_FMPI2C_STATE_MEM_BUSY_TX))
    {
      FMPI2C_MasterTransmit_ISR(hfmpi2c);
    }
  }

  /* FMPI2C in mode Receiver ----------------------------------------------------*/
  if (((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_RXNE) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TCR) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TC) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR) == SET)) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, (FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_RXI | FMPI2C_IT_ADDRI)) == SET))
  {
    /* Slave mode selected */
    if (hfmpi2c->State == HAL_FMPI2C_STATE_SLAVE_BUSY_RX)
    {
      FMPI2C_SlaveReceive_ISR(hfmpi2c);
    }
  } 
  if (((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_RXNE) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TCR) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TC) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET)) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, (FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_RXI)) == SET))
  {
    /* Master mode selected */
    if ((hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_RX) || (hfmpi2c->State == HAL_FMPI2C_STATE_MEM_BUSY_RX))
    {
      FMPI2C_MasterReceive_ISR(hfmpi2c);
    }
  } 
}

/**
  * @brief  This function handles FMPI2C error interrupt request.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval None
  */
void HAL_FMPI2C_ER_IRQHandler(FMPI2C_HandleTypeDef *hfmpi2c)
{
  /* FMPI2C Bus error interrupt occurred ------------------------------------*/
  if((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BERR) == SET) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, FMPI2C_IT_ERRI) == SET))
  { 
    hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_BERR;
   
    /* Clear BERR flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_BERR);
  }
  
  /* FMPI2C Over-Run/Under-Run interrupt occurred ----------------------------------------*/
  if((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_OVR) == SET) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, FMPI2C_IT_ERRI) == SET))
  { 
    hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_OVR;

    /* Clear OVR flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_OVR);
  }

  /* FMPI2C Arbitration Loss error interrupt occurred -------------------------------------*/
  if((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_ARLO) == SET) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, FMPI2C_IT_ERRI) == SET))
  { 
    hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_ARLO;

    /* Clear ARLO flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_ARLO);
  }

  /* Call the Error Callback in case of Error detected */
  if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
  {
    hfmpi2c->State = HAL_FMPI2C_STATE_READY;
    
    HAL_FMPI2C_ErrorCallback(hfmpi2c);
  }
}

/**
  * @brief  Master Tx Transfer completed callbacks.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval None
  */
 __weak void HAL_FMPI2C_MasterTxCpltCallback(FMPI2C_HandleTypeDef *hfmpi2c)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_FMPI2C_TxCpltCallback could be implemented in the user file
   */ 
}

/**
  * @brief  Master Rx Transfer completed callbacks.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval None
  */
__weak void HAL_FMPI2C_MasterRxCpltCallback(FMPI2C_HandleTypeDef *hfmpi2c)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_FMPI2C_TxCpltCallback could be implemented in the user file
   */
}

/** @brief  Slave Tx Transfer completed callbacks.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval None
  */
 __weak void HAL_FMPI2C_SlaveTxCpltCallback(FMPI2C_HandleTypeDef *hfmpi2c)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_FMPI2C_TxCpltCallback could be implemented in the user file
   */ 
}

/**
  * @brief  Slave Rx Transfer completed callbacks.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval None
  */
__weak void HAL_FMPI2C_SlaveRxCpltCallback(FMPI2C_HandleTypeDef *hfmpi2c)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_FMPI2C_TxCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Memory Tx Transfer completed callbacks.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval None
  */
 __weak void HAL_FMPI2C_MemTxCpltCallback(FMPI2C_HandleTypeDef *hfmpi2c)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_FMPI2C_TxCpltCallback could be implemented in the user file
   */ 
}

/**
  * @brief  Memory Rx Transfer completed callbacks.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval None
  */
__weak void HAL_FMPI2C_MemRxCpltCallback(FMPI2C_HandleTypeDef *hfmpi2c)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_FMPI2C_TxCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  FMPI2C error callbacks.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval None
  */
 __weak void HAL_FMPI2C_ErrorCallback(FMPI2C_HandleTypeDef *hfmpi2c)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_FMPI2C_ErrorCallback could be implemented in the user file
   */ 
}

/**
  * @}
  */

/** @defgroup FMPI2C_Exported_Functions_Group3 Peripheral State and Errors functions
 *  @brief   Peripheral State and Errors functions
 *
@verbatim   
 ===============================================================================
            ##### Peripheral State and Errors functions #####
 ===============================================================================  
    [..]
    This subsection permit to get in run-time the status of the peripheral 
    and the data flow.

@endverbatim
  * @{
  */

/**
  * @brief  Returns the FMPI2C state.
  * @param  hfmpi2c : FMPI2C handle
  * @retval HAL state
  */
HAL_FMPI2C_StateTypeDef HAL_FMPI2C_GetState(FMPI2C_HandleTypeDef *hfmpi2c)
{
  return hfmpi2c->State;
}

/**
* @brief  Return the FMPI2C error code
* @param  hfmpi2c : pointer to a FMPI2C_HandleTypeDef structure that contains
  *              the configuration information for the specified FMPI2C.
* @retval FMPI2C Error Code
*/
uint32_t HAL_FMPI2C_GetError(FMPI2C_HandleTypeDef *hfmpi2c)
{
  return hfmpi2c->ErrorCode;
}

/**
  * @}
  */  

/**
  * @brief  Handle Interrupt Flags Master Transmit Mode
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval HAL status
  */
static HAL_StatusTypeDef FMPI2C_MasterTransmit_ISR(FMPI2C_HandleTypeDef *hfmpi2c) 
{
  uint16_t DevAddress;
  
  /* Process Locked */
  __HAL_LOCK(hfmpi2c); 
  
  if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TXIS) == SET)
  {
    /* Write data to TXDR */
    hfmpi2c->Instance->TXDR = (*hfmpi2c->pBuffPtr++);
    hfmpi2c->XferSize--;
    hfmpi2c->XferCount--;	
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TCR) == SET)
  {
    if((hfmpi2c->XferSize == 0)&&(hfmpi2c->XferCount!=0))
    {
      DevAddress = (hfmpi2c->Instance->CR2 & FMPI2C_CR2_SADD);
      
      if(hfmpi2c->XferCount > 255)
      {    
        FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
        hfmpi2c->XferSize = 255;
      }
      else
      {
        FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferCount, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
        hfmpi2c->XferSize = hfmpi2c->XferCount;
      }
    }
    else
    {
      /* Process Unlocked */
      __HAL_UNLOCK(hfmpi2c);
      
      /* Wrong size Status regarding TCR flag event */
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_SIZE;
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TC) == SET)
  {
    if(hfmpi2c->XferCount == 0)
    {
      /* Generate Stop */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_STOP;
    }
    else
    {
      /* Process Unlocked */
      __HAL_UNLOCK(hfmpi2c);
      
      /* Wrong size Status regarding TCR flag event */
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_SIZE;
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET)
  {
    /* Disable ERR, TC, STOP, NACK, TXI interrupt */
    __HAL_FMPI2C_DISABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_TXI );

    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);

    /* Clear Configuration Register 2 */
    __HAL_FMPI2C_RESET_CR2(hfmpi2c);

    hfmpi2c->State = HAL_FMPI2C_STATE_READY;

    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);

    if(hfmpi2c->State == HAL_FMPI2C_STATE_MEM_BUSY_TX)
    {
      HAL_FMPI2C_MemTxCpltCallback(hfmpi2c);
    }
    else
    {
      HAL_FMPI2C_MasterTxCpltCallback(hfmpi2c);
    }
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET)
  {
    /* Clear NACK Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF);

    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
    HAL_FMPI2C_ErrorCallback(hfmpi2c);
  }
  
  /* Process Unlocked */
  __HAL_UNLOCK(hfmpi2c);
  
  return HAL_OK;    
}  

/**
  * @brief  Handle Interrupt Flags Master Receive Mode
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval HAL status
  */
static HAL_StatusTypeDef FMPI2C_MasterReceive_ISR(FMPI2C_HandleTypeDef *hfmpi2c) 
{
  uint16_t DevAddress;

  /* Process Locked */
  __HAL_LOCK(hfmpi2c);
  
  if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_RXNE) == SET)
  {  
    /* Read data from RXDR */
    (*hfmpi2c->pBuffPtr++) = hfmpi2c->Instance->RXDR;
    hfmpi2c->XferSize--;
    hfmpi2c->XferCount--;
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TCR) == SET)
  {
    if((hfmpi2c->XferSize == 0)&&(hfmpi2c->XferCount!=0))
    {                  
      DevAddress = (hfmpi2c->Instance->CR2 & FMPI2C_CR2_SADD);
      
      if(hfmpi2c->XferCount > 255)
      {
        FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
        hfmpi2c->XferSize = 255;
      }      
      else
      {    
        FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferCount, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
        hfmpi2c->XferSize = hfmpi2c->XferCount;
      } 
    } 
    else
    {
      /* Process Unlocked */
      __HAL_UNLOCK(hfmpi2c);
      
      /* Wrong size Status regarding TCR flag event */
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_SIZE;
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TC) == SET)
  {
    if(hfmpi2c->XferCount == 0)
    {
      /* Generate Stop */
      hfmpi2c->Instance->CR2 |= FMPI2C_CR2_STOP;
    }
    else
    {
      /* Process Unlocked */
      __HAL_UNLOCK(hfmpi2c);
      
      /* Wrong size Status regarding TCR flag event */
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_SIZE;
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET)
  {
    /* Disable ERR, TC, STOP, NACK, TXI interrupt */
    __HAL_FMPI2C_DISABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_RXI );
      
    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
      
    /* Clear Configuration Register 2 */
    __HAL_FMPI2C_RESET_CR2(hfmpi2c);
    
    hfmpi2c->State = HAL_FMPI2C_STATE_READY;

    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    if(hfmpi2c->State == HAL_FMPI2C_STATE_MEM_BUSY_RX)
    {
      HAL_FMPI2C_MemRxCpltCallback(hfmpi2c);
    }
    else
    {
      HAL_FMPI2C_MasterRxCpltCallback(hfmpi2c);
    }
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET)
  {
    /* Clear NACK Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF);

    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
    HAL_FMPI2C_ErrorCallback(hfmpi2c);
  }
    
  /* Process Unlocked */
  __HAL_UNLOCK(hfmpi2c); 
  
  return HAL_OK; 

}  

/**
  * @brief  Handle Interrupt Flags Slave Transmit Mode
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval HAL status
  */
static HAL_StatusTypeDef FMPI2C_SlaveTransmit_ISR(FMPI2C_HandleTypeDef *hfmpi2c) 
{
  /* Process locked */
  __HAL_LOCK(hfmpi2c);
  
  if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) != RESET)
  {
    /* Check that FMPI2C transfer finished */
    /* if yes, normal usecase, a NACK is sent by the MASTER when Transfer is finished */
    /* Mean XferCount == 0*/
    /* So clear Flag NACKF only */
    if(hfmpi2c->XferCount == 0)
    {
      /* Clear NACK Flag */
      __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF);

      /* Process Unlocked */
      __HAL_UNLOCK(hfmpi2c);
    }
    else
    {
      /* if no, error usecase, a Non-Acknowledge of last Data is generated by the MASTER*/
      /* Clear NACK Flag */
      __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF);

      /* Set ErrorCode corresponding to a Non-Acknowledge */
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;

      /* Process Unlocked */
      __HAL_UNLOCK(hfmpi2c);
    
      /* Call the Error callback to prevent upper layer */
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR) == SET)
  {
    /* Clear ADDR flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR);
  }
  /* Check first if STOPF is set          */
  /* to prevent a Write Data in TX buffer */
  /* which is stuck in TXDR until next    */
  /* communication with Master            */
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET)
  {
    /* Disable ERRI, TCI, STOPI, NACKI, ADDRI, RXI, TXI interrupt */
    __HAL_FMPI2C_DISABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI );
    
    /* Disable Address Acknowledge */
    hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;

    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);

    hfmpi2c->State = HAL_FMPI2C_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);

    HAL_FMPI2C_SlaveTxCpltCallback(hfmpi2c);
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TXIS) == SET)
  {
    /* Write data to TXDR only if XferCount not reach "0" */
    /* A TXIS flag can be set, during STOP treatment      */
    if(hfmpi2c->XferCount > 0)
    {
      /* Write data to TXDR */
      hfmpi2c->Instance->TXDR = (*hfmpi2c->pBuffPtr++);
      hfmpi2c->XferCount--;
    }
  }

  /* Process Unlocked */
  __HAL_UNLOCK(hfmpi2c);
  
  return HAL_OK;
}  

/**
  * @brief  Handle Interrupt Flags Slave Receive Mode
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @retval HAL status
  */
static HAL_StatusTypeDef FMPI2C_SlaveReceive_ISR(FMPI2C_HandleTypeDef *hfmpi2c) 
{
  /* Process Locked */
  __HAL_LOCK(hfmpi2c);
  
  if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) != RESET)
  {
    /* Clear NACK Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF);

    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);
    
    hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
    HAL_FMPI2C_ErrorCallback(hfmpi2c);
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR) == SET)
  {
    /* Clear ADDR flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR);
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_RXNE) == SET)
  {
    /* Read data from RXDR */
    (*hfmpi2c->pBuffPtr++) = hfmpi2c->Instance->RXDR;
    hfmpi2c->XferSize--;
    hfmpi2c->XferCount--;
  }
  else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET)
  {
    /* Disable ERRI, TCI, STOPI, NACKI, ADDRI, RXI, TXI interrupt */
    __HAL_FMPI2C_DISABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_RXI );
    
    /* Disable Address Acknowledge */
    hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;

    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);

    hfmpi2c->State = HAL_FMPI2C_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);

    HAL_FMPI2C_SlaveRxCpltCallback(hfmpi2c);
  }

  /* Process Unlocked */
  __HAL_UNLOCK(hfmpi2c);
  
  return HAL_OK;     
}  

/**
  * @brief  Master sends target device address followed by internal memory address for write request.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  MemAddress: Internal memory address
  * @param  MemAddSize: Size of internal memory address
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef FMPI2C_RequestMemoryWrite(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout)   
{
  FMPI2C_TransferConfig(hfmpi2c,DevAddress,MemAddSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_WRITE);

  /* Wait until TXIS flag is set */
  if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK)
  {
    if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
    {
      return HAL_ERROR;
    }
    else
    {
      return HAL_TIMEOUT;
    }
  }

  /* If Memory address size is 8Bit */
  if(MemAddSize == FMPI2C_MEMADD_SIZE_8BIT)
  {
    /* Send Memory Address */
    hfmpi2c->Instance->TXDR = __HAL_FMPI2C_MEM_ADD_LSB(MemAddress);    
  }      
  /* If Memory address size is 16Bit */
  else
  {
    /* Send MSB of Memory Address */
    hfmpi2c->Instance->TXDR = __HAL_FMPI2C_MEM_ADD_MSB(MemAddress); 
    
    /* Wait until TXIS flag is set */
    if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        return HAL_ERROR;
      }
      else
      {
        return HAL_TIMEOUT;
      }
    }
    
    /* Send LSB of Memory Address */
    hfmpi2c->Instance->TXDR = __HAL_FMPI2C_MEM_ADD_LSB(MemAddress);  
  }
  
  /* Wait until TCR flag is set */
  if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout) != HAL_OK)      
  {
    return HAL_TIMEOUT;
  }

return HAL_OK;
}

/**
  * @brief  Master sends target device address followed by internal memory address for read request.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  DevAddress: Target device address
  * @param  MemAddress: Internal memory address
  * @param  MemAddSize: Size of internal memory address
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef FMPI2C_RequestMemoryRead(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout)
{
  FMPI2C_TransferConfig(hfmpi2c,DevAddress,MemAddSize, FMPI2C_SOFTEND_MODE, FMPI2C_GENERATE_START_WRITE);
  
  /* Wait until TXIS flag is set */
  if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK)
  {
    if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
    {
      return HAL_ERROR;
    }
    else
    {
      return HAL_TIMEOUT;
    }
  }
  
  /* If Memory address size is 8Bit */
  if(MemAddSize == FMPI2C_MEMADD_SIZE_8BIT)
  {
    /* Send Memory Address */
    hfmpi2c->Instance->TXDR = __HAL_FMPI2C_MEM_ADD_LSB(MemAddress);    
  }      
  /* If Mememory address size is 16Bit */
  else
  {
    /* Send MSB of Memory Address */
    hfmpi2c->Instance->TXDR = __HAL_FMPI2C_MEM_ADD_MSB(MemAddress); 
    
    /* Wait until TXIS flag is set */
    if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        return HAL_ERROR;
      }
      else
      {
        return HAL_TIMEOUT;
      }
    }
    
    /* Send LSB of Memory Address */
    hfmpi2c->Instance->TXDR = __HAL_FMPI2C_MEM_ADD_LSB(MemAddress);  
  }
  
  /* Wait until TC flag is set */
  if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TC, RESET, Timeout) != HAL_OK)      
  {
    return HAL_TIMEOUT;
  }
  
  return HAL_OK;
}


/**
  * @brief  DMA FMPI2C master transmit process complete callback.
  * @param  hdma: DMA handle
  * @retval None
  */
static void FMPI2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma) 
{
  uint16_t DevAddress;
  FMPI2C_HandleTypeDef* hfmpi2c = (FMPI2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
  
  /* Check if last DMA request was done with RELOAD */
  /* Set NBYTES to write and reload if size > 255 */
  if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
  {
    /* Wait until TCR flag is set */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, FMPI2C_TIMEOUT_TCR) != HAL_OK)      
    {
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
    }

    /* Disable DMA Request */
    hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_TXDMAEN; 
    
    /* Check if Errors has been detected during transfer */
    if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
    {
      /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
      /* Wait until STOPF flag is reset */ 
      if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
      {
        if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
        {
          hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
        }
        else
        {
          hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
        }
      }
    
      /* Clear STOP Flag */
      __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
          
      /* Clear Configuration Register 2 */
      __HAL_FMPI2C_RESET_CR2(hfmpi2c);

      hfmpi2c->XferCount = 0;
    
      hfmpi2c->State = HAL_FMPI2C_STATE_READY;
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
    else
    {
      hfmpi2c->pBuffPtr += hfmpi2c->XferSize;
      hfmpi2c->XferCount -= hfmpi2c->XferSize;
      if(hfmpi2c->XferCount > 255)
      {
        hfmpi2c->XferSize = 255;
      }
      else
      {
        hfmpi2c->XferSize = hfmpi2c->XferCount;
      }

      DevAddress = (hfmpi2c->Instance->CR2 & FMPI2C_CR2_SADD);
              
      /* Enable the DMA channel */
      HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)hfmpi2c->pBuffPtr, (uint32_t)&hfmpi2c->Instance->TXDR, hfmpi2c->XferSize);
      
      /* Send Slave Address */
      /* Set NBYTES to write and reload if size > 255 */
      if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
      {
        FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
      }
      else
      {
        FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
      }  

      /* Wait until TXIS flag is set */
      if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_TXIS) != HAL_OK)
      {
        /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
        /* Wait until STOPF flag is reset */ 
        if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
        {
          if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
          {
            hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
          }
          else
          {
            hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
          }
        }
      
        /* Clear STOP Flag */
        __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
            
        /* Clear Configuration Register 2 */
        __HAL_FMPI2C_RESET_CR2(hfmpi2c);

        hfmpi2c->XferCount = 0;
      
        hfmpi2c->State = HAL_FMPI2C_STATE_READY;
        HAL_FMPI2C_ErrorCallback(hfmpi2c);
      }
      else
      {
        /* Enable DMA Request */
        hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN;
      }
    }
  }
  else
  {
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
    /* Wait until STOPF flag is reset */ 
    if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
      }
      else
      {
        hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
      }
    }
  
    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
  	
    /* Clear Configuration Register 2 */
    __HAL_FMPI2C_RESET_CR2(hfmpi2c);

    /* Disable DMA Request */
    hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_TXDMAEN; 
  
    hfmpi2c->XferCount = 0;
  
    hfmpi2c->State = HAL_FMPI2C_STATE_READY;

   /* Check if Errors has been detected during transfer */
    if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
    {
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
    else
    {
      HAL_FMPI2C_MasterTxCpltCallback(hfmpi2c);
    }
  }
}

/**
  * @brief  DMA FMPI2C slave transmit process complete callback. 
  * @param  hdma: DMA handle
  * @retval None
  */
static void FMPI2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma) 
{
  FMPI2C_HandleTypeDef* hfmpi2c = (FMPI2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
  
  /* Wait until STOP flag is set */
  if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
  {
    if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
    {
      /* Normal Use case, a AF is generated by master */
      /* to inform slave the end of transfer */
      hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
    }
    else
    {
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
    }
  }
  
  /* Clear STOP flag */
  __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_STOPF);
  
  /* Wait until BUSY flag is reset */ 
  if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, FMPI2C_TIMEOUT_BUSY) != HAL_OK)      
  {
    hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
  }
  
  /* Disable DMA Request */
  hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_TXDMAEN; 
  
  hfmpi2c->XferCount = 0;
  
  hfmpi2c->State = HAL_FMPI2C_STATE_READY;

  /* Check if Errors has been detected during transfer */
  if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
  {
    HAL_FMPI2C_ErrorCallback(hfmpi2c);
  }
  else
  {
    HAL_FMPI2C_SlaveTxCpltCallback(hfmpi2c);
  }
}

/**
  * @brief DMA FMPI2C master receive process complete callback 
  * @param  hdma: DMA handle
  * @retval None
  */
static void FMPI2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma) 
{
  FMPI2C_HandleTypeDef* hfmpi2c = (FMPI2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
  uint16_t DevAddress;
  
  /* Check if last DMA request was done with RELOAD */
  /* Set NBYTES to write and reload if size > 255 */
  if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
  {
    /* Wait until TCR flag is set */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, FMPI2C_TIMEOUT_TCR) != HAL_OK)      
    {
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
    }

    /* Disable DMA Request */
    hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_RXDMAEN; 

    /* Check if Errors has been detected during transfer */
    if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
    {
      /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
      /* Wait until STOPF flag is reset */ 
      if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
      {
        if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
        {
          hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
        }
        else
        {
          hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
        }
      }
    
      /* Clear STOP Flag */
      __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
          
      /* Clear Configuration Register 2 */
      __HAL_FMPI2C_RESET_CR2(hfmpi2c);
    
      hfmpi2c->XferCount = 0;
    
      hfmpi2c->State = HAL_FMPI2C_STATE_READY;
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
    else
    {
      hfmpi2c->pBuffPtr += hfmpi2c->XferSize;
      hfmpi2c->XferCount -= hfmpi2c->XferSize;
      if(hfmpi2c->XferCount > 255)
      {
        hfmpi2c->XferSize = 255;
      }
      else
      {
        hfmpi2c->XferSize = hfmpi2c->XferCount;
      }

      DevAddress = (hfmpi2c->Instance->CR2 & FMPI2C_CR2_SADD);
              
      /* Enable the DMA channel */
      HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)hfmpi2c->pBuffPtr, hfmpi2c->XferSize);
      
      /* Send Slave Address */
      /* Set NBYTES to write and reload if size > 255 */
      if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
      {
        FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
      }
      else
      {
        FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
      }  

      /* Wait until RXNE flag is set */
      if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, FMPI2C_TIMEOUT_RXNE) != HAL_OK)      
      {
        hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
      }
      
      /* Check if Errors has been detected during transfer */
      if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
      {
        /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
        /* Wait until STOPF flag is reset */ 
        if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
        {
          if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
          {
            hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
          }
          else
          {
            hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
          }
        }
      
        /* Clear STOP Flag */
        __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
            
        /* Clear Configuration Register 2 */
        __HAL_FMPI2C_RESET_CR2(hfmpi2c);
      
        hfmpi2c->XferCount = 0;
      
        hfmpi2c->State = HAL_FMPI2C_STATE_READY;
      
        HAL_FMPI2C_ErrorCallback(hfmpi2c);
      }
      else
      {
        /* Enable DMA Request */
        hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN;
      }
    }
  }
  else
  {
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
    /* Wait until STOPF flag is reset */ 
    if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
      }
      else
      {
        hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
      }
    }
  
    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
  	
    /* Clear Configuration Register 2 */
    __HAL_FMPI2C_RESET_CR2(hfmpi2c);
  
    /* Disable DMA Request */
    hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_RXDMAEN; 
  
    hfmpi2c->XferCount = 0;
  
    hfmpi2c->State = HAL_FMPI2C_STATE_READY;

    /* Check if Errors has been detected during transfer */
    if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
    {
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
    else
    {
      HAL_FMPI2C_MasterRxCpltCallback(hfmpi2c);
    }
  }
}

/**
  * @brief  DMA FMPI2C slave receive process complete callback.
  * @param  hdma: DMA handle
  * @retval None
  */
static void FMPI2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma) 
{  
  FMPI2C_HandleTypeDef* hfmpi2c = (FMPI2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
  
  /* Wait until STOPF flag is reset */ 
  if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
  {
    if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
    {
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
    }
    else
    {
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
    }
  }
  
  /* Clear STOPF flag */
  __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
  
  /* Wait until BUSY flag is reset */ 
  if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, FMPI2C_TIMEOUT_BUSY) != HAL_OK)      
  {
    hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
  }
  
  /* Disable DMA Request */
  hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_RXDMAEN; 
  
  /* Disable Address Acknowledge */
  hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;

  hfmpi2c->XferCount = 0;
  
  hfmpi2c->State = HAL_FMPI2C_STATE_READY;

  /* Check if Errors has been detected during transfer */
  if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
  {
    HAL_FMPI2C_ErrorCallback(hfmpi2c);
  }
  else
  {
    HAL_FMPI2C_SlaveRxCpltCallback(hfmpi2c);
  }
}

/**
  * @brief DMA FMPI2C Memory Write process complete callback 
  * @param hdma : DMA handle
  * @retval None
  */
static void FMPI2C_DMAMemTransmitCplt(DMA_HandleTypeDef *hdma)   
{
  uint16_t DevAddress;
  FMPI2C_HandleTypeDef* hfmpi2c = ( FMPI2C_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  /* Check if last DMA request was done with RELOAD */
  /* Set NBYTES to write and reload if size > 255 */
  if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
  {
    /* Wait until TCR flag is set */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, FMPI2C_TIMEOUT_TCR) != HAL_OK)      
    {
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
    }

    /* Disable DMA Request */
    hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_TXDMAEN; 
    
    /* Check if Errors has been detected during transfer */
    if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
    {
      /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
      /* Wait until STOPF flag is reset */ 
      if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
      {
        if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
        {
          hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
        }
        else
        {
          hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
        }
      }
    
      /* Clear STOP Flag */
      __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
          
      /* Clear Configuration Register 2 */
      __HAL_FMPI2C_RESET_CR2(hfmpi2c);

      hfmpi2c->XferCount = 0;
    
      hfmpi2c->State = HAL_FMPI2C_STATE_READY;
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
    else
    {
      hfmpi2c->pBuffPtr += hfmpi2c->XferSize;
      hfmpi2c->XferCount -= hfmpi2c->XferSize;
      if(hfmpi2c->XferCount > 255)
      {
        hfmpi2c->XferSize = 255;
      }
      else
      {
        hfmpi2c->XferSize = hfmpi2c->XferCount;
      }

      DevAddress = (hfmpi2c->Instance->CR2 & FMPI2C_CR2_SADD);
              
      /* Enable the DMA channel */
      HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)hfmpi2c->pBuffPtr, (uint32_t)&hfmpi2c->Instance->TXDR, hfmpi2c->XferSize);
      
      /* Send Slave Address */
      /* Set NBYTES to write and reload if size > 255 */
      if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
      {
        FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
      }
      else
      {
        FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
      }  

      /* Wait until TXIS flag is set */
      if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_TXIS) != HAL_OK)
      {
        /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
        /* Wait until STOPF flag is reset */ 
        if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
        {
          if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
          {
            hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
          }
          else
          {
            hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
          }
        }
      
        /* Clear STOP Flag */
        __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
            
        /* Clear Configuration Register 2 */
        __HAL_FMPI2C_RESET_CR2(hfmpi2c);

        hfmpi2c->XferCount = 0;
      
        hfmpi2c->State = HAL_FMPI2C_STATE_READY;
        HAL_FMPI2C_ErrorCallback(hfmpi2c);
      }
      else
      {
        /* Enable DMA Request */
        hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN;
      }
    }
  }
  else
  {
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
    /* Wait until STOPF flag is reset */ 
    if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
      }
      else
      {
        hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
      }
    }
  
    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
  	
    /* Clear Configuration Register 2 */
    __HAL_FMPI2C_RESET_CR2(hfmpi2c);

    /* Disable DMA Request */
    hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_TXDMAEN; 
  
    hfmpi2c->XferCount = 0;
  
    hfmpi2c->State = HAL_FMPI2C_STATE_READY;

    /* Check if Errors has been detected during transfer */
    if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
    {
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
    else
    {
      HAL_FMPI2C_MemTxCpltCallback(hfmpi2c);
    }
  }
}

/**
  * @brief  DMA FMPI2C Memory Read process complete callback
  * @param  hdma: DMA handle
  * @retval None
  */
static void FMPI2C_DMAMemReceiveCplt(DMA_HandleTypeDef *hdma)   
{  
  FMPI2C_HandleTypeDef* hfmpi2c = ( FMPI2C_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;  
  uint16_t DevAddress;
  
  /* Check if last DMA request was done with RELOAD */
  /* Set NBYTES to write and reload if size > 255 */
  if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
  {
    /* Wait until TCR flag is set */
    if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, FMPI2C_TIMEOUT_TCR) != HAL_OK)      
    {
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
    }

    /* Disable DMA Request */
    hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_RXDMAEN; 

    /* Check if Errors has been detected during transfer */
    if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
    {
      /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
      /* Wait until STOPF flag is reset */ 
      if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
      {
        if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
        {
          hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
        }
        else
        {
          hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
        }
      }
    
      /* Clear STOP Flag */
      __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
          
      /* Clear Configuration Register 2 */
      __HAL_FMPI2C_RESET_CR2(hfmpi2c);
    
      hfmpi2c->XferCount = 0;
    
      hfmpi2c->State = HAL_FMPI2C_STATE_READY;
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
    else
    {
      hfmpi2c->pBuffPtr += hfmpi2c->XferSize;
      hfmpi2c->XferCount -= hfmpi2c->XferSize;
      if(hfmpi2c->XferCount > 255)
      {
        hfmpi2c->XferSize = 255;
      }
      else
      {
        hfmpi2c->XferSize = hfmpi2c->XferCount;
      }

      DevAddress = (hfmpi2c->Instance->CR2 & FMPI2C_CR2_SADD);
              
      /* Enable the DMA channel */
      HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)hfmpi2c->pBuffPtr, hfmpi2c->XferSize);
      
      /* Send Slave Address */
      /* Set NBYTES to write and reload if size > 255 */
      if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) )
      {
        FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP);
      }
      else
      {
        FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP);
      }  

      /* Wait until RXNE flag is set */
      if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, FMPI2C_TIMEOUT_RXNE) != HAL_OK)      
      {
        hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
      }
      
      /* Check if Errors has been detected during transfer */
      if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
      {
        /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
        /* Wait until STOPF flag is reset */ 
        if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
        {
          if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
          {
            hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
          }
          else
          {
            hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
          }
        }
      
        /* Clear STOP Flag */
        __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
            
        /* Clear Configuration Register 2 */
        __HAL_FMPI2C_RESET_CR2(hfmpi2c);
      
        hfmpi2c->XferCount = 0;
      
        hfmpi2c->State = HAL_FMPI2C_STATE_READY;
        HAL_FMPI2C_ErrorCallback(hfmpi2c);
      }
      else
      {
        /* Enable DMA Request */
        hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN;
      }
    }
  }
  else
  {
    /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */
    /* Wait until STOPF flag is reset */ 
    if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK)
    {
      if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF)
      {
        hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF;
      }
      else
      {
        hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
      }
    }
  
    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);
  	
    /* Clear Configuration Register 2 */
    __HAL_FMPI2C_RESET_CR2(hfmpi2c);
  
    /* Disable DMA Request */
    hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_RXDMAEN; 
  
    hfmpi2c->XferCount = 0;
  
    hfmpi2c->State = HAL_FMPI2C_STATE_READY;

    /* Check if Errors has been detected during transfer */
    if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE)
    {
      HAL_FMPI2C_ErrorCallback(hfmpi2c);
    }
    else
    {
      HAL_FMPI2C_MemRxCpltCallback(hfmpi2c);
    }
  }
}

/**
  * @brief  DMA FMPI2C communication error callback. 
  * @param hdma : DMA handle
  * @retval None
  */
static void FMPI2C_DMAError(DMA_HandleTypeDef *hdma)   
{
  FMPI2C_HandleTypeDef* hfmpi2c = ( FMPI2C_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  /* Disable Acknowledge */
  hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK;
  
  hfmpi2c->XferCount = 0;
  
  hfmpi2c->State = HAL_FMPI2C_STATE_READY;
  
  hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA;
  
  HAL_FMPI2C_ErrorCallback(hfmpi2c);
}

/**
  * @brief  This function handles FMPI2C Communication Timeout.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  Flag: specifies the FMPI2C flag to check.
  * @param  Status: The new Flag status (SET or RESET).
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef FMPI2C_WaitOnFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout)  
{  
  uint32_t tickstart = HAL_GetTick();
     
  /* Wait until flag is set */
  if(Status == RESET)
  {    
    while(__HAL_FMPI2C_GET_FLAG(hfmpi2c, Flag) == RESET)
    {
      /* Check for the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          hfmpi2c->State= HAL_FMPI2C_STATE_READY;
          /* Process Unlocked */
          __HAL_UNLOCK(hfmpi2c);
          return HAL_TIMEOUT;
        }
      }
    }
  }
  else
  {
    while(__HAL_FMPI2C_GET_FLAG(hfmpi2c, Flag) != RESET)
    {
      /* Check for the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          hfmpi2c->State= HAL_FMPI2C_STATE_READY;
          /* Process Unlocked */
          __HAL_UNLOCK(hfmpi2c);
          return HAL_TIMEOUT;
        }
      }
    }
  }
  return HAL_OK;
}

/**
  * @brief  This function handles FMPI2C Communication Timeout for specific usage of TXIS flag.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef FMPI2C_WaitOnTXISFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout)  
{  
  uint32_t tickstart = HAL_GetTick();
  
  while(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TXIS) == RESET)
  {
    /* Check if a NACK is detected */
    if(FMPI2C_IsAcknowledgeFailed(hfmpi2c, Timeout) != HAL_OK)
    {
      return HAL_ERROR;
    }
		
    /* Check for the Timeout */
    if(Timeout != HAL_MAX_DELAY)
    {
      if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
      {
        hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
        hfmpi2c->State= HAL_FMPI2C_STATE_READY;

        /* Process Unlocked */
        __HAL_UNLOCK(hfmpi2c);

        return HAL_TIMEOUT;
      }
    }
  }
  return HAL_OK;      
}

/**
  * @brief  This function handles FMPI2C Communication Timeout for specific usage of STOP flag.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef FMPI2C_WaitOnSTOPFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout)
{  
  uint32_t tickstart = 0x00;
  tickstart = HAL_GetTick();
  
  while(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == RESET)
  {
    /* Check if a NACK is detected */
    if(FMPI2C_IsAcknowledgeFailed(hfmpi2c, Timeout) != HAL_OK)
    {
      return HAL_ERROR;
    }
		
    /* Check for the Timeout */
    if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
    {
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
      hfmpi2c->State= HAL_FMPI2C_STATE_READY;

      /* Process Unlocked */
      __HAL_UNLOCK(hfmpi2c);

      return HAL_TIMEOUT;
    }
  }
  return HAL_OK;
}

/**
  * @brief  This function handles FMPI2C Communication Timeout for specific usage of RXNE flag.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef FMPI2C_WaitOnRXNEFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout)
{  
  uint32_t tickstart = 0x00;
  tickstart = HAL_GetTick();
  
  while(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_RXNE) == RESET)
  {
    /* Check if a STOPF is detected */
    if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET)
    {
      /* Clear STOP Flag */
      __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);

      /* Clear Configuration Register 2 */
      __HAL_FMPI2C_RESET_CR2(hfmpi2c);

      hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE;
      hfmpi2c->State= HAL_FMPI2C_STATE_READY;

      /* Process Unlocked */
      __HAL_UNLOCK(hfmpi2c);

      return HAL_ERROR;
    }
		
    /* Check for the Timeout */
    if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
    {
      hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT;
      hfmpi2c->State= HAL_FMPI2C_STATE_READY;

      /* Process Unlocked */
      __HAL_UNLOCK(hfmpi2c);

      return HAL_TIMEOUT;
    }
  }
  return HAL_OK;
}

/**
  * @brief  This function handles Acknowledge failed detection during an FMPI2C Communication.
  * @param  hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains
  *                the configuration information for the specified FMPI2C.
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef FMPI2C_IsAcknowledgeFailed(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout)
{
  uint32_t tickstart = 0x00;
  tickstart = HAL_GetTick();

  if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET)
  {
    /* Generate stop if necessary only in case of FMPI2C peripheral in MASTER mode */
    if((hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_TX) || (hfmpi2c->State == HAL_FMPI2C_STATE_MEM_BUSY_TX)
       || (hfmpi2c->State == HAL_FMPI2C_STATE_MEM_BUSY_RX))
    {
      /* No need to generate the STOP condition if AUTOEND mode is enabled */
      /* Generate the STOP condition only in case of SOFTEND mode is enabled */
      if((hfmpi2c->Instance->CR2 & FMPI2C_AUTOEND_MODE) != FMPI2C_AUTOEND_MODE)
      {
        /* Generate Stop */
        hfmpi2c->Instance->CR2 |= FMPI2C_CR2_STOP;
      }
    }
		
    /* Wait until STOP Flag is reset */
    /* AutoEnd should be initiate after AF */
    while(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == RESET)
    {
      /* Check for the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
      if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          hfmpi2c->State= HAL_FMPI2C_STATE_READY;
          /* Process Unlocked */
          __HAL_UNLOCK(hfmpi2c);
          return HAL_TIMEOUT;
        }
      }
    }

    /* Clear NACKF Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF);

    /* Clear STOP Flag */
    __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF);

    /* Clear Configuration Register 2 */
    __HAL_FMPI2C_RESET_CR2(hfmpi2c);

    hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_AF;
    hfmpi2c->State= HAL_FMPI2C_STATE_READY;

    /* Process Unlocked */
    __HAL_UNLOCK(hfmpi2c);

    return HAL_ERROR;
  }
  return HAL_OK;
}

/**
  * @brief  Handles FMPI2Cx communication when starting transfer or during transfer (TC or TCR flag are set).
  * @param  hfmpi2c: FMPI2C handle.
  * @param  DevAddress: specifies the slave address to be programmed.
  * @param  Size: specifies the number of bytes to be programmed.
  *   This parameter must be a value between 0 and 255.
  * @param  Mode: new state of the FMPI2C START condition generation.
  *   This parameter can be one of the following values:
  *     @arg FMPI2C_RELOAD_MODE: Enable Reload mode .
  *     @arg FMPI2C_AUTOEND_MODE: Enable Automatic end mode.
  *     @arg FMPI2C_SOFTEND_MODE: Enable Software end mode.
  * @param  Request: new state of the FMPI2C START condition generation.
  *   This parameter can be one of the following values:
  *     @arg FMPI2C_NO_STARTSTOP: Don't Generate stop and start condition.
  *     @arg FMPI2C_GENERATE_STOP: Generate stop condition (Size should be set to 0).
  *     @arg FMPI2C_GENERATE_START_READ: Generate Restart for read request.
  *     @arg FMPI2C_GENERATE_START_WRITE: Generate Restart for write request.
  * @retval None
  */
static void FMPI2C_TransferConfig(FMPI2C_HandleTypeDef *hfmpi2c,  uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_FMPI2C_ALL_INSTANCE(hfmpi2c->Instance));
  assert_param(IS_TRANSFER_MODE(Mode));
  assert_param(IS_TRANSFER_REQUEST(Request));
    
  /* Get the CR2 register value */
  tmpreg = hfmpi2c->Instance->CR2;
  
  /* clear tmpreg specific bits */
  tmpreg &= (uint32_t)~((uint32_t)(FMPI2C_CR2_SADD | FMPI2C_CR2_NBYTES | FMPI2C_CR2_RELOAD | FMPI2C_CR2_AUTOEND | FMPI2C_CR2_RD_WRN | FMPI2C_CR2_START | FMPI2C_CR2_STOP));
  
  /* update tmpreg */
  tmpreg |= (uint32_t)(((uint32_t)DevAddress & FMPI2C_CR2_SADD) | (((uint32_t)Size << 16 ) & FMPI2C_CR2_NBYTES) | \
            (uint32_t)Mode | (uint32_t)Request);
  
  /* update CR2 register */
  hfmpi2c->Instance->CR2 = tmpreg;  
}  

/**
  * @}
  */

/**
  * @}
  */
#endif /* STM32F410xx || STM32F446xx  */
#endif /* HAL_FMPI2C_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/