aboutsummaryrefslogtreecommitdiff
path: root/libraries/mbed/rtos/Makefile
AgeCommit message (Collapse)Author
2016-04-14import mbed rtos libraryPaul Selkirk
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
//======================================================================
//
// modexpa7_factor.v
// -----------------------------------------------------------------------------
// Montgomery factor calculation block.
//
// Authors: Pavel Shatov
//
// Copyright (c) 2017, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// - Redistributions of source code must retain the above copyright
//   notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
//   notice, this list of conditions and the following disclaimer in the
//   documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
//   be used to endorse or promote products derived from this software
//   without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================

module modexpa7_factor #
	(
			//
			// This sets the address widths of memory buffers. Internal data
			// width is 32 bits, so for e.g. 2048-bit operands buffers must store
			// 2048 / 32 = 64 words, and these need 6-bit address bus, because
			// 2 ** 6 = 64.
			//
		parameter	OPERAND_ADDR_WIDTH = 6
	)
	(
		input											clk,
		input											rst_n,

		input											ena,
		output										rdy,

		output	[OPERAND_ADDR_WIDTH-1:0]	n_bram_addr,
		output	[OPERAND_ADDR_WIDTH-1:0]	f_bram_addr,

		input		[                32-1:0]	n_bram_out,

		output	[                32-1:0]	f_bram_in,
		output										f_bram_wr,

		input		[OPERAND_ADDR_WIDTH-1:0]	n_num_words
	);

	
		//
		// FSM Declaration
		//
	localparam	[ 7: 0]	FSM_STATE_IDLE		= 8'h00;
	
	localparam	[ 7: 0]	FSM_STATE_INIT_1	= 8'hA1;
	localparam	[ 7: 0]	FSM_STATE_INIT_2	= 8'hA2;
		
	localparam	[ 7: 0]	FSM_STATE_CALC_1	= 8'hB1;
	localparam	[ 7: 0]	FSM_STATE_CALC_2	= 8'hB2;
	localparam	[ 7: 0]	FSM_STATE_CALC_3	= 8'hB3;
	localparam	[ 7: 0]	FSM_STATE_CALC_4	= 8'hB4;
	localparam	[ 7: 0]	FSM_STATE_CALC_5	= 8'hB5;
	localparam	[ 7: 0]	FSM_STATE_CALC_6	= 8'hB6;
	localparam	[ 7: 0]	FSM_STATE_CALC_7	= 8'hB7;
	localparam	[ 7: 0]	FSM_STATE_CALC_8	= 8'hB8;
	
	localparam	[ 7: 0]	FSM_STATE_SAVE_1	= 8'hC1;
	localparam	[ 7: 0]	FSM_STATE_SAVE_2	= 8'hC2;
	localparam	[ 7: 0]	FSM_STATE_SAVE_3	= 8'hC3;
	localparam	[ 7: 0]	FSM_STATE_SAVE_4	= 8'hC4;
	localparam	[ 7: 0]	FSM_STATE_SAVE_5	= 8'hC5;
	
	localparam	[ 7: 0]	FSM_STATE_STOP		= 8'hFF;
	
		//
		// FSM State / Next State
		//
	reg	[ 7: 0]	fsm_state = FSM_STATE_IDLE;
	reg	[ 7: 0]	fsm_next_state;


		//
		// Enable Delay (Trigger)
		//
   reg ena_dly = 1'b0;

		/* delay enable by one clock cycle */
   always @(posedge clk) ena_dly <= ena;

		/* trigger new operation when enable goes high */
   wire ena_trig = ena && !ena_dly;
	
	
		//
		// Ready Flag Logic
		//
	reg rdy_reg = 1'b1;
	assign rdy = rdy_reg;

   always @(posedge clk or negedge rst_n)
		
			/* reset flag */
		if (rst_n == 1'b0)						rdy_reg <= 1'b1;
		else begin
		
				/* clear flag when operation is started */
			if (fsm_state == FSM_STATE_IDLE)	rdy_reg <= ~ena_trig;
			
				/* set flag after operation is finished */
			if (fsm_state == FSM_STATE_STOP)	rdy_reg <= 1'b1;			
			
		end

		
		//
		// Parameters Latch
		//
	reg	[OPERAND_ADDR_WIDTH-1:0]	n_num_words_latch;

		/* save number of words in modulus when new operation starts*/
	always @(posedge clk)
		//
		if (fsm_next_state == FSM_STATE_INIT_1)
			n_num_words_latch <= n_num_words;


		//
		// Cycle Counters
		//
	reg	[OPERAND_ADDR_WIDTH+5:0]	cyc_cnt;		// cycle counter
		
	wire	[OPERAND_ADDR_WIDTH+5:0]	cyc_cnt_zero = {1'b0, {OPERAND_ADDR_WIDTH{1'b0}}, {5{1'b0}}};
	wire	[OPERAND_ADDR_WIDTH+5:0]	cyc_cnt_last = {n_num_words, 1'b1, {5{1'b1}}};
	wire	[OPERAND_ADDR_WIDTH+5:0]	cyc_cnt_next = cyc_cnt + 1'b1;

		/* handy flag */
	wire	cyc_cnt_done = (cyc_cnt == cyc_cnt_last) ? 1'b1 : 1'b0;
	
	always @(posedge clk)
		//
		if (fsm_next_state == FSM_STATE_CALC_1)
			//
			case (fsm_state)
				FSM_STATE_INIT_2:	cyc_cnt <= cyc_cnt_zero;
				FSM_STATE_SAVE_5:	cyc_cnt <= cyc_cnt_done ? cyc_cnt : cyc_cnt_next;
			endcase
			
			
		//
		// Handy Address Values
		//
		
		/* the very first address */
	wire	[OPERAND_ADDR_WIDTH-1:0]	bram_addr_zero = {OPERAND_ADDR_WIDTH{1'b0}};
	
		/* the very last address */
	wire	[OPERAND_ADDR_WIDTH-1:0]	bram_addr_last = n_num_words_latch;
		
		
		//
		// Block Memories
		//
		
		/*
		 * This module uses 5 block memories:
		 * N - external input, stores modulus
		 * F - external output, stores Montgomery factor
		 * F0 - internal, stores intermediate result
		 * F1 - internal, stores quantity F0 << 1
		 * F2 - internal, stores quantity F1 - N
		 *
		 */
		 
	reg	[OPERAND_ADDR_WIDTH-1:0]	f_addr;
	reg	[OPERAND_ADDR_WIDTH-1:0]	f0_addr;	
	reg	[OPERAND_ADDR_WIDTH-1:0]	f1_addr;
	reg	[OPERAND_ADDR_WIDTH-1:0]	f2_addr;
	
	reg	[31: 0]	f_data_in;
	reg	[31: 0]	f0_data_in;
	reg	[31: 0]	f1_data_in;
	reg	[31: 0]	f2_data_in;
	
	wire	[31: 0]	f0_data_out;
	wire	[31: 0]	f1_data_out;
	wire	[31: 0]	f2_data_out;
	
	reg				f_wren;
	reg				f0_wren;
	reg				f1_wren;
	reg				f2_wren;
	
		/* map top-level ports to internal registers */
	assign n_bram_addr	= f0_addr;
	assign f_bram_addr	= f_addr;
	assign f_bram_in		= f_data_in;
	assign f_bram_wr		= f_wren;
	
	bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
	bram_f0 (.clk(clk), .a_addr(f0_addr), .a_wr(f0_wren), .a_in(f0_data_in), .a_out(f0_data_out));

	bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
	bram_f1 (.clk(clk), .a_addr(f1_addr), .a_wr(f1_wren), .a_in(f1_data_in), .a_out(f1_data_out));

	bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
	bram_f2 (.clk(clk), .a_addr(f2_addr), .a_wr(f2_wren), .a_in(f2_data_in), .a_out(f2_data_out));		
		
		/* handy values */
	wire	[OPERAND_ADDR_WIDTH-1:0]	f_addr_next = f_addr + 1'b1;
	wire	[OPERAND_ADDR_WIDTH-1:0]	f0_addr_next = f0_addr + 1'b1;
	wire	[OPERAND_ADDR_WIDTH-1:0]	f1_addr_next = f1_addr + 1'b1;
	wire	[OPERAND_ADDR_WIDTH-1:0]	f2_addr_next = f2_addr + 1'b1;
	
		/* handy flags */
	wire										f_addr_done =  (f_addr == bram_addr_last) ? 1'b1 : 1'b0;
	wire										f0_addr_done =  (f0_addr == bram_addr_last) ? 1'b1 : 1'b0;
	wire										f1_addr_done =  (f1_addr == bram_addr_last) ? 1'b1 : 1'b0;
	wire										f2_addr_done =  (f2_addr == bram_addr_last) ? 1'b1 : 1'b0;
	
		//
		// Delayed Flags
		//
	reg f12_addr_done_dly;
	
	always @(posedge clk)
		//
		f12_addr_done_dly <= f1_addr_done & f2_addr_done;
	
	
		//
		// Modulus Delay Line
		//
	reg	[31: 0]	n_bram_out_dly;
	
		/* delay block memory output by 1 clock cycle */
	always @(posedge clk) n_bram_out_dly <= n_bram_out;
	
	
		//
		// Subtractor
		//
		
		/*
		 * This subtractor calculated quantity F2 = F1 - N
		 *
		 */
	
	wire	[31: 0]	sub_d;
	wire				sub_b_in;
	reg				sub_b_in_mask;
	wire				sub_b_out;
	
		/* add masking into borrow feedback chain */
	assign sub_b_in = sub_b_out & ~sub_b_in_mask;

	always @(posedge clk)
		
			/* mask borrow into the very first word */
		sub_b_in_mask <= (fsm_next_state == FSM_STATE_CALC_3) ? 1'b1 : 1'b0;
		
	modexpa7_subtractor32 sub_inst
	(
		.clk		(clk),
		.ce		(1'b1),
		.a			(f1_data_in),
		.b			(n_bram_out_dly),
		.b_in		(sub_b_in),
		.d			(sub_d),
		.b_out	(sub_b_out)
	);


		//
		// F0 Shift Carry Logic
		//
		
		/*
		 * F0 value is repeatedly shifted to the left, so we need carry logic
		 * to save the MSB of the current output word and feed into the LSB
		 * of the next input word.
		 *
		 */
	
	reg	f0_data_out_carry;

		/* shifted output */
	wire	[31: 0]	f0_data_out_shifted = {f0_data_out[30:0], f0_data_out_carry};

	always @(posedge clk)
		
			/* mask carry into the very first word, propagate carry otherwise */
		case (fsm_next_state)
			FSM_STATE_CALC_2:		f0_data_out_carry <= 1'b0;
			FSM_STATE_CALC_3,
			FSM_STATE_CALC_4,
			FSM_STATE_CALC_5,
			FSM_STATE_CALC_6:		f0_data_out_carry <= f0_data_out[31];
			default:					f0_data_out_carry <= 1'bX;
		endcase


		//
		// Delay Lines
		//
	reg	sub_b_out_dly1;
	reg	f0_data_out_carry_dly1;
	reg	f0_data_out_carry_dly2;
	
	always @(posedge clk) begin
		sub_b_out_dly1				<= sub_b_out;
		f0_data_out_carry_dly1	<= f0_data_out_carry;
		f0_data_out_carry_dly2	<= f0_data_out_carry_dly1;
	end
	
	
		//
		// F Update Flag
		//
	reg	flag_keep_f;
	
	always @(posedge clk)
		
			/* update flag when new word of F2 is obtained */
		if (fsm_next_state == FSM_STATE_SAVE_1)
			flag_keep_f <= sub_b_out_dly1 & ~f0_data_out_carry_dly2;

	
		//
		// Block Memory Address Update Logic
		//
	always @(posedge clk) begin
		//
		// F0
		//
		case (fsm_next_state)
			FSM_STATE_INIT_1,
			FSM_STATE_CALC_1,
			FSM_STATE_SAVE_3:		f0_addr <= bram_addr_zero;
			//
			FSM_STATE_INIT_2,
			FSM_STATE_CALC_2,
			FSM_STATE_CALC_3,
			FSM_STATE_CALC_4,
			FSM_STATE_CALC_5,
			FSM_STATE_CALC_6,
			FSM_STATE_SAVE_4,
			FSM_STATE_SAVE_5:		f0_addr <= !f0_addr_done ? f0_addr_next : f0_addr;
		endcase
		//
		// F1
		//
		case (fsm_next_state)
			FSM_STATE_CALC_3,
			FSM_STATE_SAVE_1:		f1_addr <= bram_addr_zero;
			//
			FSM_STATE_CALC_4,
			FSM_STATE_CALC_5,
			FSM_STATE_CALC_6,
			FSM_STATE_SAVE_2,
			FSM_STATE_SAVE_3,
			FSM_STATE_SAVE_4:		f1_addr <= !f1_addr_done ? f1_addr_next : f1_addr;
		endcase
		//
		// F2
		//
		case (fsm_next_state)
			FSM_STATE_CALC_5,
			FSM_STATE_SAVE_1:		f2_addr <= bram_addr_zero;
			//
			FSM_STATE_CALC_6,
			FSM_STATE_CALC_7,
			FSM_STATE_CALC_8,
			FSM_STATE_SAVE_2,
			FSM_STATE_SAVE_3,
			FSM_STATE_SAVE_4:		f2_addr <= !f2_addr_done ? f2_addr_next : f2_addr;
		endcase
		//
		// F
		//
		case (fsm_next_state)
			FSM_STATE_SAVE_3:		f_addr <= bram_addr_zero;
			//
			FSM_STATE_SAVE_4,
			FSM_STATE_SAVE_5:		f_addr <= !f_addr_done ? f_addr_next : f_addr;
		endcase
		//
	end
	
	
		//
		// Block Memory Write Enable Logic
		//
	always @(posedge clk) begin
		//
		// F0
		//
		case (fsm_next_state)			
			FSM_STATE_INIT_1,
			FSM_STATE_INIT_2,
			FSM_STATE_SAVE_3,
			FSM_STATE_SAVE_4,
			FSM_STATE_SAVE_5:		f0_wren <= 1'b1;
			default:					f0_wren <= 1'b0;
		endcase
		//
		// F1
		//
		case (fsm_next_state)
			FSM_STATE_CALC_3,
			FSM_STATE_CALC_4,
			FSM_STATE_CALC_5,
			FSM_STATE_CALC_6:		f1_wren <= 1'b1;
			default:					f1_wren <= 1'b0;
		endcase
		//
		// F2
		//
		case (fsm_next_state)
			FSM_STATE_CALC_5,
			FSM_STATE_CALC_6,
			FSM_STATE_CALC_7,
			FSM_STATE_CALC_8:		f2_wren <= 1'b1;
			default:					f2_wren <= 1'b0;
		endcase
		//
		// F
		//
		case (fsm_next_state)			
			FSM_STATE_SAVE_3,
			FSM_STATE_SAVE_4,
			FSM_STATE_SAVE_5:		f_wren <= cyc_cnt_done;
			default:					f_wren <= 1'b0;
		endcase
		//
	end


		//
		// Block Memory Input Logic
		//
	always @(posedge clk) begin
		//
		// F0
		//
		case (fsm_next_state)
			FSM_STATE_INIT_1:		f0_data_in <= 32'd1;
			FSM_STATE_INIT_2:		f0_data_in <= 32'd0;
			//
			FSM_STATE_SAVE_3,
			FSM_STATE_SAVE_4,
			FSM_STATE_SAVE_5:		f0_data_in <= flag_keep_f ? f1_data_out : f2_data_out;
			default:					f0_data_in <= {32{1'bX}};
		endcase
		//
		// F1
		//
		case (fsm_next_state)
			FSM_STATE_CALC_3,
			FSM_STATE_CALC_4,
			FSM_STATE_CALC_5,
			FSM_STATE_CALC_6:		f1_data_in <= f0_data_out_shifted;
			default:					f1_data_in <= {32{1'bX}};
		endcase
		//
		// F2
		//
		case (fsm_next_state)
			FSM_STATE_CALC_5,
			FSM_STATE_CALC_6,
			FSM_STATE_CALC_7,
			FSM_STATE_CALC_8:		f2_data_in <= sub_d;
			default:					f2_data_in <= {32{1'bX}};
		endcase
		//
		// F
		//
		case (fsm_next_state)
			FSM_STATE_SAVE_3,
			FSM_STATE_SAVE_4,
			FSM_STATE_SAVE_5:		f_data_in <= flag_keep_f ? f1_data_out : f2_data_out;
			default:					f_data_in <= {32{1'bX}};
		endcase
		//
	end

	
		//
		// FSM Process
		//
	always @(posedge clk or negedge rst_n)
		//
		if (rst_n == 1'b0)	fsm_state <= FSM_STATE_IDLE;
		else						fsm_state <= fsm_next_state;
	
	
		//
		// FSM Transition Logic
		//
	always @* begin
		//
		fsm_next_state = FSM_STATE_STOP;
		//
		case (fsm_state)

			FSM_STATE_IDLE:		if (ena_trig)				fsm_next_state = FSM_STATE_INIT_1;
										else							fsm_next_state = FSM_STATE_IDLE;
												
			FSM_STATE_INIT_1:										fsm_next_state = FSM_STATE_INIT_2;
			FSM_STATE_INIT_2:		if (f0_addr_done)			fsm_next_state = FSM_STATE_CALC_1;
										else							fsm_next_state = FSM_STATE_INIT_2;
												
			FSM_STATE_CALC_1:										fsm_next_state = FSM_STATE_CALC_2;
			FSM_STATE_CALC_2:										fsm_next_state = FSM_STATE_CALC_3;
			FSM_STATE_CALC_3:										fsm_next_state = FSM_STATE_CALC_4;
			FSM_STATE_CALC_4:										fsm_next_state = FSM_STATE_CALC_5;
			FSM_STATE_CALC_5:										fsm_next_state = FSM_STATE_CALC_6;
			FSM_STATE_CALC_6:		if (f1_addr_done)			fsm_next_state = FSM_STATE_CALC_7;
										else							fsm_next_state = FSM_STATE_CALC_6;
			FSM_STATE_CALC_7:										fsm_next_state = FSM_STATE_CALC_8;
			FSM_STATE_CALC_8:										fsm_next_state = FSM_STATE_SAVE_1;

			FSM_STATE_SAVE_1:										fsm_next_state = FSM_STATE_SAVE_2;
			FSM_STATE_SAVE_2:										fsm_next_state = FSM_STATE_SAVE_3;
			FSM_STATE_SAVE_3:										fsm_next_state = FSM_STATE_SAVE_4;
			FSM_STATE_SAVE_4:		if (f12_addr_done_dly)	fsm_next_state = FSM_STATE_SAVE_5;
										else							fsm_next_state = FSM_STATE_SAVE_4;
			FSM_STATE_SAVE_5:		if (cyc_cnt_done)			fsm_next_state = FSM_STATE_STOP;
										else							fsm_next_state = FSM_STATE_CALC_1;
										
			FSM_STATE_STOP:										fsm_next_state = FSM_STATE_IDLE;

		endcase
	end


endmodule

//======================================================================
// End of file
//======================================================================