/*
* stm-uart.c
* ----------
* Functions for sending strings and numbers over the uart.
*
* Copyright (c) 2015, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "stm-init.h"
#include "stm-uart.h"
#include <string.h>
UART_HandleTypeDef huart_mgmt; /* USART1 */
UART_HandleTypeDef huart_user; /* USART2 */
DMA_HandleTypeDef hdma_usart_mgmt_rx;
DMA_HandleTypeDef hdma_usart_user_rx;
static stm_uart_port_t default_uart = STM_UART_USER;
#ifdef HAL_DMA_MODULE_ENABLED
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* USER UART RX */
HAL_NVIC_SetPriority(DMA1_Stream5_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream5_IRQn);
/* MGMT UART RX */
HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn);
}
#endif /* HAL_DMA_MODULE_ENABLED */
/* USART1 init function */
static void MX_USART1_UART_Init(void)
{
huart_mgmt.Instance = USART1;
huart_mgmt.Init.BaudRate = USART_MGMT_BAUD_RATE;
huart_mgmt.Init.WordLength = UART_WORDLENGTH_8B;
huart_mgmt.Init.StopBits = UART_STOPBITS_1;
huart_mgmt.Init.Parity = UART_PARITY_NONE;
huart_mgmt.Init.Mode = UART_MODE_TX_RX;
huart_mgmt.Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS;
huart_mgmt.Init.OverSampling = UART_OVERSAMPLING_16;
#ifdef HAL_DMA_MODULE_ENABLED
__HAL_LINKDMA(&huart_mgmt, hdmarx, hdma_usart_mgmt_rx);
#endif
if (HAL_UART_Init(&huart_mgmt) != HAL_OK) {
/* Initialization Error */
Error_Handler();
}
}
/* USART2 init function */
static void MX_USART2_UART_Init(void)
{
huart_user.Instance = USART2;
huart_user.Init.BaudRate = USART_USER_BAUD_RATE;
huart_user.Init.WordLength = UART_WORDLENGTH_8B;
huart_user.Init.StopBits = UART_STOPBITS_1;
huart_user.Init.Parity = UART_PARITY_NONE;
huart_user.Init.Mode = UART_MODE_TX_RX;
huart_user.Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS;
huart_user.Init.OverSampling = UART_OVERSAMPLING_16;
#ifdef HAL_DMA_MODULE_ENABLED
__HAL_LINKDMA(&huart_user, hdmarx, hdma_usart_user_rx);
#endif
if (HAL_UART_Init(&huart_user) != HAL_OK) {
/* Initialization Error */
Error_Handler();
}
}
void uart_init(void)
{
#ifdef HAL_DMA_MODULE_ENABLED
MX_DMA_Init();
#endif
MX_USART1_UART_Init();
MX_USART2_UART_Init();
}
void uart_set_default(stm_uart_port_t port)
{
if (port == STM_UART_USER || port == STM_UART_MGMT)
default_uart = port;
}
static inline UART_HandleTypeDef *_which_uart(stm_uart_port_t port)
{
if (port == STM_UART_USER) {
return &huart_user;
} else if (port == STM_UART_MGMT) {
return &huart_mgmt;
}
return NULL;
}
/* send a single character */
HAL_StatusTypeDef uart_send_char(uint8_t ch)
{
return uart_send_char2(default_uart, ch);
}
HAL_StatusTypeDef uart_send_char2(stm_uart_port_t port, uint8_t ch)
{
return uart_send_bytes(port, &ch, 1);
}
/* receive a single character */
HAL_StatusTypeDef uart_recv_char(uint8_t *cp)
{
return uart_recv_char2(default_uart, cp, HAL_MAX_DELAY);
}
/* receive a single character */
HAL_StatusTypeDef uart_recv_char2(stm_uart_port_t port, uint8_t *cp, uint32_t timeout)
{
UART_HandleTypeDef *uart = _which_uart(port);
if (uart)
return HAL_UART_Receive(uart, cp, 1, timeout);
return HAL_ERROR;
}
/* send a string */
HAL_StatusTypeDef uart_send_string(char *s)
{
return uart_send_string2(default_uart, s);
}
/* send a string */
HAL_StatusTypeDef uart_send_string2(stm_uart_port_t port, const char *s)
{
return uart_send_bytes(port, (uint8_t *) s, strlen(s));
}
/* send raw bytes */
HAL_StatusTypeDef uart_send_bytes(stm_uart_port_t port, uint8_t *buf, size_t len)
{
UART_HandleTypeDef *uart = _which_uart(port);
if (uart) {
for (int timeout = 0; timeout < 100; ++timeout) {
HAL_UART_StateTypeDef status = HAL_UART_GetState(uart);
if (status == HAL_UART_STATE_READY ||
status == HAL_UART_STATE_BUSY_RX)
return HAL_UART_Transmit(uart, (uint8_t *) buf, (uint32_t) len, 0x1);
}
}
return HAL_ERROR;
}
/* receive raw bytes */
HAL_StatusTypeDef uart_receive_bytes(stm_uart_port_t port, uint8_t *buf, size_t len, uint32_t timeout)
{
UART_HandleTypeDef *uart = _which_uart(port);
if (uart)
return HAL_UART_Receive(uart, (uint8_t *) buf, (uint32_t) len, timeout);
return HAL_ERROR;
}
/* Generalized routine to send binary, decimal, and hex integers.
* This code is adapted from Chris Giese's printf.c
*/
HAL_StatusTypeDef uart_send_number(uint32_t num, uint8_t digits, uint8_t radix)
{
return uart_send_number2(default_uart, num, digits, radix);
}
HAL_StatusTypeDef uart_send_number2(stm_uart_port_t port, uint32_t num, uint8_t digits, uint8_t radix)
{
#define BUFSIZE 32
char buf[BUFSIZE];
char *where = buf + BUFSIZE;
/* initialize buf so we can add leading 0 by adjusting the pointer */
memset(buf, '0', BUFSIZE);
/* build the string backwards, starting with the least significant digit */
do {
uint32_t temp;
temp = num % radix;
where--;
if (temp < 10)
*where = temp + '0';
else
*where = temp - 10 + 'A';
num = num / radix;
} while (num != 0);
if (where > buf + BUFSIZE - digits)
/* pad with leading 0 */
where = buf + BUFSIZE - digits;
else
/* number is larger than the specified number of digits */
digits = buf + BUFSIZE - where;
return uart_send_bytes(port, (uint8_t *) where, digits);
}
HAL_StatusTypeDef uart_send_hexdump(stm_uart_port_t port, const uint8_t *buf,
const uint8_t start_offset, const uint8_t end_offset)
{
uint32_t i;
uart_send_string2(port, "00 -- ");
for (i = start_offset; i <= end_offset; i++) {
if (i && (! (i % 16))) {
uart_send_string2(port, "\r\n");
if (i != end_offset) {
/* Output new offset unless the last byte is reached */
uart_send_number2(port, i, 2, 16);
uart_send_string2(port, " -- ");
}
}
uart_send_number2(port, *(buf + i), 2, 16);
uart_send_string2(port, " ");
}
return HAL_OK;
}