/*
* spiflash_n25q128.c
* ------------------
* Functions and defines for accessing SPI flash with part number n25q128.
*
* The Alpha board has two of these SPI flash memorys, the FPGA config memory
* and the keystore memory.
*
* Copyright (c) 2016-2017, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spiflash_n25q128.h"
#define N25Q128_NUM_BYTES (N25Q128_PAGE_SIZE * N25Q128_NUM_PAGES)
#if N25Q128_SECTOR_SIZE * N25Q128_NUM_SECTORS != N25Q128_NUM_BYTES || \
N25Q128_SUBSECTOR_SIZE * N25Q128_NUM_SUBSECTORS != N25Q128_NUM_BYTES
#error Inconsistent definitions for pages / sectors / subsectors
#endif
static inline void _n25q128_select(struct spiflash_ctx *ctx)
{
HAL_GPIO_WritePin(ctx->cs_n_port, ctx->cs_n_pin, GPIO_PIN_RESET);
}
static inline void _n25q128_deselect(struct spiflash_ctx *ctx)
{
HAL_GPIO_WritePin(ctx->cs_n_port, ctx->cs_n_pin, GPIO_PIN_SET);
}
/* Read a bit from the status register. */
static inline int _n25q128_get_status_bit(struct spiflash_ctx *ctx, unsigned bitnum)
{
// tx, rx buffers
uint8_t spi_tx[2];
uint8_t spi_rx[2];
//assert(bitnum < sizeof(uint8_t));
// send READ STATUS command
spi_tx[0] = N25Q128_COMMAND_READ_STATUS;
// send command, read response, deselect
_n25q128_select(ctx);
int ok =
HAL_SPI_TransmitReceive(ctx->hspi, spi_tx, spi_rx, 2, N25Q128_SPI_TIMEOUT) == HAL_OK;
_n25q128_deselect(ctx);
// check
if (!ok) return -1;
// done
return ((spi_rx[1] >> bitnum) & 1);
}
/* Read the Write Enable Latch bit in the status register. */
static inline int _n25q128_get_wel_flag(struct spiflash_ctx *ctx)
{
return _n25q128_get_status_bit(ctx, 1);
}
/* Read the Write In Progress bit in the status register. */
static inline int _n25q128_get_wip_flag(struct spiflash_ctx *ctx)
{
return _n25q128_get_status_bit(ctx, 0);
}
/* Wait until the flash memory is done writing */
static HAL_StatusTypeDef _n25q128_wait_while_wip(struct spiflash_ctx *ctx, uint32_t timeout)
{
uint32_t tick_end = HAL_GetTick() + timeout;
do {
switch (_n25q128_get_wip_flag(ctx)) {
case 0:
return HAL_OK;
case -1:
return HAL_ERROR;
default:
/* try again */
continue;
}
} while (HAL_GetTick() < tick_end);
return HAL_TIMEOUT;
}
/* Send the Write Enable command */
static HAL_StatusTypeDef _n25q128_write_enable(struct spiflash_ctx *ctx)
{
// tx buffer
uint8_t spi_tx[1];
// enable writing
spi_tx[0] = N25Q128_COMMAND_WRITE_ENABLE;
// activate, send command, deselect
_n25q128_select(ctx);
int ok =
HAL_SPI_Transmit(ctx->hspi, spi_tx, 1, N25Q128_SPI_TIMEOUT) == HAL_OK;
_n25q128_deselect(ctx);
// check
if (!ok) return HAL_ERROR;
// make sure, that write enable did the job
return _n25q128_get_wel_flag(ctx) ? HAL_OK : HAL_ERROR;
}
HAL_StatusTypeDef n25q128_check_id(struct spiflash_ctx *ctx)
{
// tx, rx buffers
uint8_t spi_tx[4];
uint8_t spi_rx[4];
// send READ ID command
spi_tx[0] = N25Q128_COMMAND_READ_ID;
// select, send command & read response, deselect
_n25q128_select(ctx);
int ok =
HAL_SPI_TransmitReceive(ctx->hspi, spi_tx, spi_rx, 4, N25Q128_SPI_TIMEOUT) == HAL_OK;
_n25q128_deselect(ctx);
// check
if (!ok) return HAL_ERROR;
// parse response (note, that the very first byte was received during the
// transfer of the command byte, so it contains garbage and should
// be ignored here)
return
(spi_rx[1] == N25Q128_ID_MANUFACTURER &&
spi_rx[2] == N25Q128_ID_DEVICE_TYPE &&
spi_rx[3] == N25Q128_ID_DEVICE_CAPACITY) ? HAL_OK : HAL_ERROR;
}
HAL_StatusTypeDef n25q128_write_page(struct spiflash_ctx *ctx, uint32_t page_offset, const uint8_t *page_buffer)
{
// tx buffer
uint8_t spi_tx[4];
// check offset
if (page_offset >= N25Q128_NUM_PAGES) return HAL_ERROR;
// enable writing
if (_n25q128_write_enable(ctx) != 0) return HAL_ERROR;
// calculate byte address
uint32_t byte_offset = page_offset * N25Q128_PAGE_SIZE;
// prepare PROGRAM PAGE command
spi_tx[0] = N25Q128_COMMAND_PAGE_PROGRAM;
spi_tx[1] = (uint8_t)(byte_offset >> 16);
spi_tx[2] = (uint8_t)(byte_offset >> 8);
spi_tx[3] = (uint8_t)(byte_offset >> 0);
// activate, send command, send data, deselect
_n25q128_select(ctx);
int ok =
HAL_SPI_Transmit(ctx->hspi, spi_tx, 4, N25Q128_SPI_TIMEOUT) == HAL_OK &&
HAL_SPI_Transmit(ctx->hspi, (uint8_t *) page_buffer, N25Q128_PAGE_SIZE, N25Q128_SPI_TIMEOUT) == HAL_OK;
_n25q128_deselect(ctx);
// check
if (!ok) return HAL_ERROR;
// wait until write finishes
return _n25q128_wait_while_wip(ctx, 1000);
}
static HAL_StatusTypeDef n25q128_erase_something(struct spiflash_ctx *ctx, uint8_t command, uint32_t byte_offset)
{
// check offset
if (byte_offset >= N25Q128_NUM_BYTES) return HAL_ERROR;
// tx buffer
uint8_t spi_tx[4];
// enable writing
if (_n25q128_write_enable(ctx) != 0) return HAL_ERROR;
// send command (ERASE SECTOR or ERASE SUBSECTOR)
spi_tx[0] = command;
spi_tx[1] = (uint8_t)(byte_offset >> 16);
spi_tx[2] = (uint8_t)(byte_offset >> 8);
spi_tx[3] = (uint8_t)(byte_offset >> 0);
// activate, send command, deselect
_n25q128_select(ctx);
int ok =
HAL_SPI_Transmit(ctx->hspi, spi_tx, 4, N25Q128_SPI_TIMEOUT) == HAL_OK;
_n25q128_deselect(ctx);
// check
if (!ok) return HAL_ERROR;
// wait for erase to finish
return _n25q128_wait_while_wip(ctx, 1000);
}
HAL_StatusTypeDef n25q128_erase_sector(struct spiflash_ctx *ctx, uint32_t sector_offset)
{
return n25q128_erase_something(ctx, N25Q128_COMMAND_ERASE_SECTOR,
sector_offset * N25Q128_SECTOR_SIZE);
}
HAL_StatusTypeDef n25q128_erase_subsector(struct spiflash_ctx *ctx, uint32_t subsector_offset)
{
return n25q128_erase_something(ctx, N25Q128_COMMAND_ERASE_SUBSECTOR,
subsector_offset * N25Q128_SUBSECTOR_SIZE);
}
HAL_StatusTypeDef n25q128_erase_bulk(struct spiflash_ctx *ctx)
{
// tx buffer
uint8_t spi_tx[1];
// enable writing
if (_n25q128_write_enable(ctx) != 0) return HAL_ERROR;
// send command
spi_tx[0] = N25Q128_COMMAND_ERASE_BULK;
// activate, send command, deselect
_n25q128_select(ctx);
int ok =
HAL_SPI_Transmit(ctx->hspi, spi_tx, 1, N25Q128_SPI_TIMEOUT) == HAL_OK;
_n25q128_deselect(ctx);
// check
if (!ok) return HAL_ERROR;
// wait for erase to finish
return _n25q128_wait_while_wip(ctx, 60000);
}
/* This function writes of a number of pages to the flash memory.
* The caller is responsible for ensuring that the pages have been erased.
*/
HAL_StatusTypeDef n25q128_write_data(struct spiflash_ctx *ctx, uint32_t offset, const uint8_t *buf, const uint32_t len)
{
uint32_t page;
/*
* The data sheet says:
* If the bits of the least significant address, which is the starting
* address, are not all zero, all data transmitted beyond the end of the
* current page is programmed from the starting address of the same page.
* If the number of bytes sent to the device exceed the maximum page size,
* previously latched data is discarded and only the last maximum
* page-size number of data bytes are guaranteed to be programmed
* correctly within the same page. If the number of bytes sent to the
* device is less than the maximum page size, they are correctly
* programmed at the specified addresses without any effect on the other
* bytes of the same page.
*
* This is sufficiently confusing that it makes sense to constrain the API
* to page alignment in address and length, because that's how we're using
* it anyway.
*/
if (offset % N25Q128_PAGE_SIZE != 0 || len % N25Q128_PAGE_SIZE != 0) return HAL_ERROR;
for (page = 0; page < len / N25Q128_PAGE_SIZE; page++) {
if (n25q128_write_page(ctx, offset / N25Q128_PAGE_SIZE, buf) != 0) {
return HAL_ERROR;
}
buf += N25Q128_PAGE_SIZE;
offset += N25Q128_PAGE_SIZE;
}
return HAL_OK;
}
/* This function reads zero or more pages from the SPI flash. */
HAL_StatusTypeDef n25q128_read_data(struct spiflash_ctx *ctx, uint32_t offset, uint8_t *buf, const uint32_t len)
{
// tx buffer
uint8_t spi_tx[4];
/*
* The data sheet says:
* The addressed byte can be at any location, and the address
* automatically increments to the next address after each byte of data is
* shifted out; therefore, the entire memory can be read with a single
* command. The operation is terminated by driving S# [chip select] HIGH
* at any time during data output.
*
* We're only going to call this with page-aligned address and length, but
* we're not going to enforce it here.
*/
// avoid overflow
if (offset + len > N25Q128_NUM_BYTES) return HAL_ERROR;
// prepare READ command
spi_tx[0] = N25Q128_COMMAND_READ;
spi_tx[1] = (uint8_t)(offset >> 16);
spi_tx[2] = (uint8_t)(offset >> 8);
spi_tx[3] = (uint8_t)(offset >> 0);
// activate, send command, read response, deselect
_n25q128_select(ctx);
int ok =
HAL_SPI_Transmit(ctx->hspi, spi_tx, 4, N25Q128_SPI_TIMEOUT) == HAL_OK &&
HAL_SPI_Receive(ctx->hspi, buf, len, N25Q128_SPI_TIMEOUT) == HAL_OK;
_n25q128_deselect(ctx);
// check
return ok ? HAL_OK : HAL_ERROR;
}