/*
* spiflash_n25q128.c
* ------------------
* Functions and defines for accessing SPI flash with part number n25q128.
*
* The Alpha board has two of these SPI flash memorys, the FPGA config memory
* and the keystore memory.
*
* Copyright (c) 2016-2017, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spiflash_n25q128.h"
#define _n25q128_select(ctx) HAL_GPIO_WritePin(ctx->cs_n_port, ctx->cs_n_pin, GPIO_PIN_RESET);
#define _n25q128_deselect(ctx) HAL_GPIO_WritePin(ctx->cs_n_port, ctx->cs_n_pin, GPIO_PIN_SET);
#define N25Q128_NUM_BYTES (N25Q128_PAGE_SIZE * N25Q128_NUM_PAGES)
#if N25Q128_SECTOR_SIZE * N25Q128_NUM_SECTORS != N25Q128_NUM_BYTES || \
N25Q128_SUBSECTOR_SIZE * N25Q128_NUM_SUBSECTORS != N25Q128_NUM_BYTES
#error Inconsistant definitions for pages / sectors / subsectors
#endif
int _n25q128_get_wel_flag(struct spiflash_ctx *ctx);
int n25q128_check_id(struct spiflash_ctx *ctx)
{
// tx, rx buffers
uint8_t spi_tx[4];
uint8_t spi_rx[4];
// result
HAL_StatusTypeDef ok;
// send READ ID command
spi_tx[0] = N25Q128_COMMAND_READ_ID;
// select, send command & read response, deselect
_n25q128_select(ctx);
ok = HAL_SPI_TransmitReceive(ctx->hspi, spi_tx, spi_rx, 4, N25Q128_SPI_TIMEOUT);
HAL_Delay(1);
_n25q128_deselect(ctx);
// check
if (ok != HAL_OK) return 0;
// parse response (note, that the very first byte was received during the
// transfer of the command byte, so it contains garbage and should
// be ignored here)
if (spi_rx[1] != N25Q128_ID_MANUFACTURER) return 0;
if (spi_rx[2] != N25Q128_ID_DEVICE_TYPE) return 0;
if (spi_rx[3] != N25Q128_ID_DEVICE_CAPACITY) return 0;
// done
return 1;
}
int n25q128_read_page(struct spiflash_ctx *ctx, uint32_t page_offset, uint8_t *page_buffer)
{
// tx buffer
uint8_t spi_tx[4];
// result
HAL_StatusTypeDef ok;
// check offset
if (page_offset >= N25Q128_NUM_PAGES) return 0;
// calculate byte address
page_offset *= N25Q128_PAGE_SIZE;
// prepare READ command
spi_tx[0] = N25Q128_COMMAND_READ_PAGE;
spi_tx[1] = (uint8_t)(page_offset >> 16);
spi_tx[2] = (uint8_t)(page_offset >> 8);
spi_tx[3] = (uint8_t)(page_offset >> 0);
// activate, send command
_n25q128_select(ctx);
ok = HAL_SPI_Transmit(ctx->hspi, spi_tx, 4, N25Q128_SPI_TIMEOUT);
HAL_Delay(1);
// check
if (ok != HAL_OK) {
_n25q128_deselect(ctx);
return 0;
}
// read response, deselect
ok = HAL_SPI_Receive(ctx->hspi, page_buffer, N25Q128_PAGE_SIZE, N25Q128_SPI_TIMEOUT);
HAL_Delay(1);
_n25q128_deselect(ctx);
// check
if (ok != HAL_OK) return 0;
// done
return 1;
}
int n25q128_write_page(struct spiflash_ctx *ctx, uint32_t page_offset, const uint8_t *page_buffer)
{
// tx buffer
uint8_t spi_tx[4];
// result
HAL_StatusTypeDef ok;
// check offset
if (page_offset >= N25Q128_NUM_PAGES) return 0;
// enable writing
spi_tx[0] = N25Q128_COMMAND_WRITE_ENABLE;
// activate, send command, deselect
_n25q128_select(ctx);
ok = HAL_SPI_Transmit(ctx->hspi, spi_tx, 1, N25Q128_SPI_TIMEOUT);
HAL_Delay(1);
_n25q128_deselect(ctx);
// check
if (ok != HAL_OK) return 0;
// make sure, that write enable did the job
int wel = _n25q128_get_wel_flag(ctx);
if (wel != 1) return 0;
// calculate byte address
page_offset *= N25Q128_PAGE_SIZE;
// prepare PROGRAM PAGE command
spi_tx[0] = N25Q128_COMMAND_PAGE_PROGRAM;
spi_tx[1] = (uint8_t)(page_offset >> 16);
spi_tx[2] = (uint8_t)(page_offset >> 8);
spi_tx[3] = (uint8_t)(page_offset >> 0);
// activate, send command
_n25q128_select(ctx);
ok = HAL_SPI_Transmit(ctx->hspi, spi_tx, 4, N25Q128_SPI_TIMEOUT);
HAL_Delay(1);
// check
if (ok != HAL_OK) {
_n25q128_deselect(ctx);
return 0;
}
// send data, deselect
ok = HAL_SPI_Transmit(ctx->hspi, (uint8_t *) page_buffer, N25Q128_PAGE_SIZE, N25Q128_SPI_TIMEOUT);
HAL_Delay(1);
_n25q128_deselect(ctx);
// check
if (ok != HAL_OK) return 0;
// done
return 1;
}
int n25q128_get_wip_flag(struct spiflash_ctx *ctx)
{
// tx, rx buffers
uint8_t spi_tx[2];
uint8_t spi_rx[2];
// result
HAL_StatusTypeDef ok;
// send READ STATUS command
spi_tx[0] = N25Q128_COMMAND_READ_STATUS;
// send command, read response, deselect
_n25q128_select(ctx);
ok = HAL_SPI_TransmitReceive(ctx->hspi, spi_tx, spi_rx, 2, N25Q128_SPI_TIMEOUT);
HAL_Delay(1);
_n25q128_deselect(ctx);
// check
if (ok != HAL_OK) return -1;
// done
return (spi_rx[1] & 1);
}
/* Wait until the flash memory is done writing (wip = Write In Progress) */
inline int _wait_while_wip(struct spiflash_ctx *ctx, uint32_t timeout)
{
int i;
while (timeout--) {
i = n25q128_get_wip_flag(ctx);
if (i < 0) return 0; // impossible
if (! i) break;
HAL_Delay(10);
}
return 1;
}
static int n25q128_erase_something(struct spiflash_ctx *ctx, uint8_t command, uint32_t byte_offset)
{
// check offset
if (byte_offset >= N25Q128_NUM_BYTES) return 0;
// tx buffer
uint8_t spi_tx[4];
// result
HAL_StatusTypeDef ok;
// enable writing
spi_tx[0] = N25Q128_COMMAND_WRITE_ENABLE;
// select, send command, deselect
_n25q128_select(ctx);
ok = HAL_SPI_Transmit(ctx->hspi, spi_tx, 1, N25Q128_SPI_TIMEOUT);
HAL_Delay(1);
_n25q128_deselect(ctx);
// check
if (ok != HAL_OK) return 0;
// make sure, that write enable did the job
int wel = _n25q128_get_wel_flag(ctx);
if (wel != 1) return 0;
// send command (ERASE SECTOR or ERASE SUBSECTOR)
spi_tx[0] = command;
spi_tx[1] = (uint8_t)(byte_offset >> 16);
spi_tx[2] = (uint8_t)(byte_offset >> 8);
spi_tx[3] = (uint8_t)(byte_offset >> 0);
// activate, send command, deselect
_n25q128_select(ctx);
ok = HAL_SPI_Transmit(ctx->hspi, spi_tx, 4, N25Q128_SPI_TIMEOUT);
HAL_Delay(1);
_n25q128_deselect(ctx);
// check
if (ok != HAL_OK) return 0;
// wait for erase to finish
if (! _wait_while_wip(ctx, 2000)) return 0;
// done
return 1;
}
int n25q128_erase_sector(struct spiflash_ctx *ctx, uint32_t sector_offset)
{
return n25q128_erase_something(ctx, N25Q128_COMMAND_ERASE_SECTOR,
sector_offset * N25Q128_SECTOR_SIZE);
}
int n25q128_erase_subsector(struct spiflash_ctx *ctx, uint32_t subsector_offset)
{
return n25q128_erase_something(ctx, N25Q128_COMMAND_ERASE_SUBSECTOR,
subsector_offset * N25Q128_SUBSECTOR_SIZE);
}
int n25q128_erase_bulk(struct spiflash_ctx *ctx)
{
// tx buffer
uint8_t spi_tx[1];
// result
HAL_StatusTypeDef ok;
// enable writing
spi_tx[0] = N25Q128_COMMAND_WRITE_ENABLE;
// select, send command, deselect
_n25q128_select(ctx);
ok = HAL_SPI_Transmit(ctx->hspi, spi_tx, 1, N25Q128_SPI_TIMEOUT);
HAL_Delay(1);
_n25q128_deselect(ctx);
// check
if (ok != HAL_OK) return 0;
// make sure, that write enable did the job
int wel = _n25q128_get_wel_flag(ctx);
if (wel != 1) return 0;
// send command
spi_tx[0] = N25Q128_COMMAND_ERASE_BULK;
// activate, send command, deselect
_n25q128_select(ctx);
ok = HAL_SPI_Transmit(ctx->hspi, spi_tx, 1, N25Q128_SPI_TIMEOUT);
HAL_Delay(1);
_n25q128_deselect(ctx);
// check
if (ok != HAL_OK) return 0;
// wait for erase to finish
if (! _wait_while_wip(ctx, 60000)) return 0;
// done
return 1;
}
/*
* Read the Write Enable Latch bit in the status register.
*/
int _n25q128_get_wel_flag(struct spiflash_ctx *ctx)
{
// tx, rx buffers
uint8_t spi_tx[2];
uint8_t spi_rx[2];
// result
HAL_StatusTypeDef ok;
// send READ STATUS command
spi_tx[0] = N25Q128_COMMAND_READ_STATUS;
// send command, read response, deselect
_n25q128_select(ctx);
ok = HAL_SPI_TransmitReceive(ctx->hspi, spi_tx, spi_rx, 2, N25Q128_SPI_TIMEOUT);
HAL_Delay(1);
_n25q128_deselect(ctx);
// check
if (ok != HAL_OK) return -1;
// done
return ((spi_rx[1] >> 1) & 1);
}
/* This function performs erasure if needed, and then writing of a number of pages to the flash memory */
int n25q128_write_data(struct spiflash_ctx *ctx, uint32_t offset, const uint8_t *buf, const uint32_t len, const int auto_erase)
{
uint32_t page;
/* Ensure alignment */
if ((offset % N25Q128_PAGE_SIZE) != 0) return -1;
if ((len % N25Q128_PAGE_SIZE) != 0) return -2;
if (auto_erase && (offset % N25Q128_SECTOR_SIZE) == 0) {
/*
* first page in sector, need to erase sector
*
* So why do we only do this when the buffer starts on the
* sector, as opposed to performing this check for every page?
* Also, might be better to do this by subsectors rather than
* sectors.
*/
if (! _wait_while_wip(ctx, 1000)) return -3;
if (! n25q128_erase_sector(ctx, offset / N25Q128_SECTOR_SIZE)) {
return -4;
}
}
for (page = 0; page < len / N25Q128_PAGE_SIZE; page++) {
if (! _wait_while_wip(ctx, 1000)) return -5;
if (! n25q128_write_page(ctx, offset / N25Q128_PAGE_SIZE, buf)) {
return -6;
}
buf += N25Q128_PAGE_SIZE;
offset += N25Q128_PAGE_SIZE;
/* XXX read back data and verify it, or maybe just verify ability to write
* to memory by verifying the contents of one page after erase?
*/
}
/*
* Wait until last write finishes.
*/
if (! _wait_while_wip(ctx, 1000)) return -7;
return 1;
}
/* This function reads zero or more pages from the SPI flash. */
int n25q128_read_data(struct spiflash_ctx *ctx, uint32_t offset, uint8_t *buf, const uint32_t len)
{
uint32_t page;
/* Ensure alignment */
if ((offset % N25Q128_PAGE_SIZE) != 0) return -1;
if ((len % N25Q128_PAGE_SIZE) != 0) return -2;
for (page = 0; page < len / N25Q128_PAGE_SIZE; page++) {
if (! n25q128_read_page(ctx, offset / N25Q128_PAGE_SIZE, buf)) {
return -3;
}
buf += N25Q128_PAGE_SIZE;
offset += N25Q128_PAGE_SIZE;
}
return 1;
}