/*
* cli-test.c
* ---------
* Test code with a small CLI on the management interface
*
* Copyright (c) 2016, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "stm32f4xx_hal.h"
#include "stm-init.h"
#include "stm-led.h"
#include "stm-uart.h"
#include "stm-fpgacfg.h"
#include "stm-keystore.h"
#include "stm-sdram.h"
#include "mgmt-cli.h"
#include "test_sdram.h"
#include <string.h>
extern uint32_t update_crc(uint32_t crc, uint8_t *buf, int len);
int cmd_show_cpuspeed(struct cli_def *cli, const char *command, char *argv[], int argc)
{
volatile uint32_t hclk;
hclk = HAL_RCC_GetHCLKFreq();
cli_print(cli, "HSE_VALUE: %li", HSE_VALUE);
cli_print(cli, "HCLK: %li (%i MHz)", hclk, (int) hclk / 1000 / 1000);
cli_print(cli, "SystemCoreClock: %li (%i MHz)", SystemCoreClock, (int) SystemCoreClock / 1000 / 1000);
return CLI_OK;
}
int cmd_filetransfer(struct cli_def *cli, const char *command, char *argv[], int argc)
{
uint32_t filesize = 0, crc = 0, my_crc = 0, n = 256, counter = 0;
uint8_t buf[256];
cli_print(cli, "OK, write file size (4 bytes), data in %li byte chunks, CRC-32 (4 bytes)", n);
uart_receive_bytes(STM_UART_MGMT, (void *) &filesize, 4, 1000);
cli_print(cli, "File size %li", filesize);
while (filesize) {
if (filesize < n) {
n = filesize;
}
if (uart_receive_bytes(STM_UART_MGMT, (void *) &buf, n, 1000) != HAL_OK) {
cli_print(cli, "Receive timed out");
return CLI_ERROR;
}
filesize -= n;
my_crc = update_crc(my_crc, buf, n);
counter++;
uart_send_bytes(STM_UART_MGMT, (void *) &counter, 4);
}
cli_print(cli, "Send CRC-32");
uart_receive_bytes(STM_UART_MGMT, (void *) &crc, 4, 1000);
cli_print(cli, "CRC-32 %li", crc);
if (crc == my_crc) {
cli_print(cli, "CRC checksum MATCHED");
} else {
cli_print(cli, "CRC checksum did NOT match");
}
return CLI_OK;
}
int cmd_show_fpga_status(struct cli_def *cli, const char *command, char *argv[], int argc)
{
cli_print(cli, "FPGA has %sloaded a bitstream", fpgacfg_check_done() ? "":"NOT ");
return CLI_OK;
}
int cmd_show_keystore_status(struct cli_def *cli, const char *command, char *argv[], int argc)
{
cli_print(cli, "Keystore memory is %sonline", (keystore_check_id() != 1) ? "NOT ":"");
return CLI_OK;
}
int cmd_show_keystore_data(struct cli_def *cli, const char *command, char *argv[], int argc)
{
uint8_t buf[KEYSTORE_PAGE_SIZE];
uint32_t i;
if (keystore_check_id() != 1) {
cli_print(cli, "ERROR: The keystore memory is not accessible.");
}
memset(buf, 0, sizeof(buf));
if ((i = keystore_read_data(0, buf, sizeof(buf))) != 1) {
cli_print(cli, "Failed reading first page from keystore memory: %li", i);
return CLI_ERROR;
}
cli_print(cli, "First page from keystore memory:\r\n");
uart_send_hexdump(STM_UART_MGMT, buf, 0, sizeof(buf) - 1);
uart_send_string2(STM_UART_MGMT, (char *) "\r\n\r\n");
for (i = 0; i < 8; i++) {
if (buf[i] == 0xff) break; /* never written */
if (buf[i] != 0x55) break; /* something other than a tombstone */
}
/* As a demo, tombstone byte after byte of the first 8 bytes in the keystore memory
* (as long as they do not appear to contain real data).
* If all of them are tombstones, erase the first sector to start over.
*/
if (i < 8) {
if (buf[i] == 0xff) {
cli_print(cli, "Tombstoning byte %li", i);
buf[i] = 0x55;
if ((i = keystore_write_data(0, buf, sizeof(buf))) != 1) {
cli_print(cli, "Failed writing data at offset 0: %li", i);
return CLI_ERROR;
}
}
} else {
cli_print(cli, "Erasing first sector since all the first 8 bytes are tombstones");
if ((i = keystore_erase_sectors(1)) != 1) {
cli_print(cli, "Failed erasing the first sector: %li", i);
return CLI_ERROR;
}
cli_print(cli, "Erase result: %li", i);
}
return CLI_OK;
}
/* The chunk size have to be a multiple of the SPI flash page size (256 bytes),
and it has to match the chunk size in the program sending the bitstream over the UART.
*/
#define BITSTREAM_UPLOAD_CHUNK_SIZE 4096
int cmd_fpga_bitstream_upload(struct cli_def *cli, const char *command, char *argv[], int argc)
{
uint32_t filesize = 0, crc = 0, my_crc = 0, counter = 0, i;
uint32_t offset = 0, n = BITSTREAM_UPLOAD_CHUNK_SIZE;
uint8_t buf[BITSTREAM_UPLOAD_CHUNK_SIZE];
fpgacfg_access_control(ALLOW_ARM);
cli_print(cli, "Checking if FPGA config memory is accessible");
if (fpgacfg_check_id() != 1) {
cli_print(cli, "ERROR: FPGA config memory not accessible. Check that jumpers JP7 and JP8 are installed.");
return CLI_ERROR;
}
cli_print(cli, "OK, write FPGA bitstream file size (4 bytes), data in 4096 byte chunks, CRC-32 (4 bytes)");
/* Read file size (4 bytes) */
uart_receive_bytes(STM_UART_MGMT, (void *) &filesize, 4, 1000);
cli_print(cli, "File size %li", filesize);
while (filesize) {
/* By initializing buf to the same value that erased flash has (0xff), we don't
* have to try and be smart when writing the last page of data to the memory.
*/
memset(buf, 0xff, 4096);
if (filesize < n) {
n = filesize;
}
if (uart_receive_bytes(STM_UART_MGMT, (void *) &buf, n, 1000) != HAL_OK) {
cli_print(cli, "Receive timed out");
return CLI_ERROR;
}
filesize -= n;
/* After reception of 4 KB but before ACKing we have "all" the time in the world to
* calculate CRC and write it to flash.
*/
my_crc = update_crc(my_crc, buf, n);
if ((i = fpgacfg_write_data(offset, buf, BITSTREAM_UPLOAD_CHUNK_SIZE)) != 1) {
cli_print(cli, "Failed writing data at offset %li (counter = %li): %li", offset, counter, i);
return CLI_ERROR;
}
offset += BITSTREAM_UPLOAD_CHUNK_SIZE;
/* ACK this chunk by sending the current chunk counter (4 bytes) */
counter++;
uart_send_bytes(STM_UART_MGMT, (void *) &counter, 4);
}
/* The sending side will now send it's calculated CRC-32 */
cli_print(cli, "Send CRC-32");
uart_receive_bytes(STM_UART_MGMT, (void *) &crc, 4, 1000);
cli_print(cli, "CRC-32 %li", crc);
if (crc == my_crc) {
cli_print(cli, "CRC checksum MATCHED");
} else {
cli_print(cli, "CRC checksum did NOT match");
}
fpgacfg_access_control(ALLOW_FPGA);
return CLI_OK;
}
int cmd_fpga_bitstream_erase(struct cli_def *cli, const char *command, char *argv[], int argc)
{
fpgacfg_access_control(ALLOW_ARM);
cli_print(cli, "Checking if FPGA config memory is accessible");
if (fpgacfg_check_id() != 1) {
cli_print(cli, "ERROR: FPGA config memory not accessible. Check that jumpers JP7 and JP8 are installed.");
return CLI_ERROR;
}
/* Erasing the whole config memory takes a while, we just need to erase the first sector.
* The bitstream has an EOF marker, so even if the next bitstream uploaded is shorter than
* the current one there should be no problem.
*
* This command could be made to accept an argument indicating the whole memory should be erased.
*/
if (! fpgacfg_erase_sectors(1)) {
cli_print(cli, "Erasing first sector in FPGA config memory failed");
return CLI_ERROR;
}
cli_print(cli, "Erased FPGA config memory");
fpgacfg_access_control(ALLOW_FPGA);
return CLI_OK;
}
int cmd_fpga_reset(struct cli_def *cli, const char *command, char *argv[], int argc)
{
fpgacfg_access_control(ALLOW_FPGA);
fpgacfg_reset_fpga(RESET_FULL);
cli_print(cli, "FPGA has been reset");
return CLI_OK;
}
int cmd_fpga_reset_registers(struct cli_def *cli, const char *command, char *argv[], int argc)
{
fpgacfg_access_control(ALLOW_FPGA);
fpgacfg_reset_fpga(RESET_REGISTERS);
cli_print(cli, "FPGA registers have been reset");
return CLI_OK;
}
int cmd_reboot(struct cli_def *cli, const char *command, char *argv[], int argc)
{
cli_print(cli, "\n\n\nRebooting\n\n\n");
HAL_NVIC_SystemReset();
while (1) {};
}
int cmd_test_sdram(struct cli_def *cli, const char *command, char *argv[], int argc)
{
// run external memory initialization sequence
HAL_StatusTypeDef status;
int ok, n = 1, test_completed;
cli_print(cli, "Initializing SDRAM");
status = sdram_init();
if (status != HAL_OK) {
cli_print(cli, "Failed initializing SDRAM: %i", (int) status);
return CLI_OK;
}
/* XXX support number of iterations given as argument like 'test sdram 5' */
while (n--) {
cli_print(cli, "Starting SDRAM test (n = %i)", n);
test_completed = 0;
// set LFSRs to some initial value, LFSRs will produce
// pseudo-random 32-bit patterns to test our memories
lfsr1 = 0xCCAA5533;
lfsr2 = 0xCCAA5533;
cli_print(cli, "Run sequential write-then-read test for the first chip");
ok = test_sdram_sequential(SDRAM_BASEADDR_CHIP1);
if (!ok) break;
cli_print(cli, "Run random write-then-read test for the first chip");
ok = test_sdram_random(SDRAM_BASEADDR_CHIP1);
if (!ok) break;
cli_print(cli, "Run sequential write-then-read test for the second chip");
ok = test_sdram_sequential(SDRAM_BASEADDR_CHIP2);
if (!ok) break;
cli_print(cli, "Run random write-then-read test for the second chip");
ok = test_sdram_random(SDRAM_BASEADDR_CHIP2);
if (!ok) break;
// turn blue led on (testing two chips at the same time)
led_on(LED_BLUE);
cli_print(cli, "Run interleaved write-then-read test for both chips at once");
ok = test_sdrams_interleaved(SDRAM_BASEADDR_CHIP1, SDRAM_BASEADDR_CHIP2);
led_off(LED_BLUE);
test_completed = 1;
cli_print(cli, "SDRAM test (n = %i) completed", n);
}
if (! test_completed) {
cli_print(cli, "SDRAM test failed (n = %i)", n);
} else {
cli_print(cli, "SDRAM test completed successfully");
}
return CLI_OK;
}
int check_auth(const char *username, const char *password)
{
if (strcasecmp(username, "ct") != 0)
return CLI_ERROR;
if (strcasecmp(password, "ct") != 0)
return CLI_ERROR;
return CLI_OK;
}
void configure_cli_show(struct cli_def *cli)
{
/* show */
cli_command_root(show);
/* show cpuspeed */
cli_command_node(show, cpuspeed, "Show the speed at which the CPU currently operates");
cli_command_branch(show, fpga);
/* show fpga status*/
cli_command_node(show_fpga, status, "Show status about the FPGA");
cli_command_branch(show, keystore);
/* show keystore status*/
cli_command_node(show_keystore, status, "Show status of the keystore memory");
cli_command_node(show_keystore, data, "Show the first page of the keystore memory");
}
void configure_cli_fpga(struct cli_def *cli)
{
/* fpga */
cli_command_root(fpga);
/* fpga reset */
cli_command_node(fpga, reset, "Reset FPGA (config reset)");
/* fpga reset registers */
cli_command_node(fpga_reset, registers, "Reset FPGA registers (soft reset)");
cli_command_branch(fpga, bitstream);
/* fpga bitstream upload */
cli_command_node(fpga_bitstream, upload, "Upload new FPGA bitstream");
/* fpga bitstream erase */
cli_command_node(fpga_bitstream, erase, "Erase FPGA config memory");
}
void configure_cli_test(struct cli_def *cli)
{
/* test */
cli_command_root(test);
/* test sdram */
cli_command_node(test, sdram, "Run SDRAM tests");
}
void configure_cli_misc(struct cli_def *cli)
{
/* filetransfer */
cli_command_root_node(filetransfer, "Test file transfering");
/* reboot */
cli_command_root_node(reboot, "Reboot the STM32");
}
int
main()
{
static struct cli_def cli;
stm_init();
led_on(LED_RED);
mgmt_cli_init(&cli);
cli_set_auth_callback(&cli, check_auth);
configure_cli_show(&cli);
configure_cli_fpga(&cli);
configure_cli_test(&cli);
configure_cli_misc(&cli);
led_off(LED_RED);
led_on(LED_GREEN);
embedded_cli_loop(&cli);
/* embedded_cli_loop returns when the user enters 'quit' or 'exit' */
cli_print(&cli, "Rebooting in 4 seconds");
HAL_Delay(3000);
HAL_NVIC_SystemReset();
/* NOT REACHED */
Error_Handler();
}