/*
* Test read/write/erase performance of the N25Q128 SPI flash chip.
*/
#include "string.h"
#include "stm-init.h"
#include "stm-led.h"
#include "stm-uart.h"
#include "stm-keystore.h"
#include "spiflash_n25q128.h"
/*
* Use the keystore memory for testing, because it's less involved than
* using the FPGA configuration memory, and less work to restore it to a
* useful configuration.
*
* However, rather than using the stm-keystore abstractions, this version
* goes straight to the low-level API.
*/
extern struct spiflash_ctx keystore_ctx;
static struct spiflash_ctx *ctx = &keystore_ctx;
/*
* 1a. Read the entire flash by pages, ignoring data.
*/
static void test_read_page(void)
{
uint8_t read_buf[N25Q128_PAGE_SIZE];
uint32_t i;
int err;
for (i = 0; i < N25Q128_NUM_PAGES; ++i) {
err = n25q128_read_page(ctx, i, read_buf);
if (err != HAL_OK) {
uart_send_string("ERROR: n25q128_read_page returned ");
uart_send_integer(err, 0);
uart_send_string("\r\n");
break;
}
}
}
/*
* 1b. Read the entire flash by subsectors, ignoring data.
*/
static void test_read_subsector(void)
{
uint8_t read_buf[N25Q128_SUBSECTOR_SIZE];
uint32_t i;
int err;
for (i = 0; i < N25Q128_NUM_SUBSECTORS; ++i) {
err = n25q128_read_subsector(ctx, i, read_buf);
if (err != HAL_OK) {
uart_send_string("ERROR: n25q128_read_subsector returned ");
uart_send_integer(err, 0);
uart_send_string("\r\n");
break;
}
}
}
/*
* Read the flash data and verify it against a known pattern.
* It turns out that verification doesn't slow us down in any measurable
* way, because memcmp on 256 bytes is pretty inconsequential.
*/
static void _read_verify(uint8_t *vrfy_buf)
{
uint8_t read_buf[N25Q128_PAGE_SIZE];
uint32_t i;
int err;
for (i = 0; i < N25Q128_NUM_PAGES; ++i) {
err = n25q128_read_page(ctx, i, read_buf);
if (err != HAL_OK) {
uart_send_string("ERROR: n25q128_read_page returned ");
uart_send_integer(err, 0);
uart_send_string("\r\n");
break;
}
if (memcmp(read_buf, vrfy_buf, N25Q128_PAGE_SIZE) != 0) {
uart_send_string("ERROR: verify failed in page ");
uart_send_integer(i, 0);
uart_send_string("\r\n");
break;
}
}
}
/*
* 2a. Erase the entire flash by sectors.
*/
static void test_erase_sector(void)
{
uint32_t i;
int err;
for (i = 0; i < N25Q128_NUM_SECTORS; ++i) {
err = n25q128_erase_sector(ctx, i);
if (err != HAL_OK) {
uart_send_string("ERROR: n25q128_erase_sector returned ");
uart_send_integer(err, 0);
uart_send_string("\r\n");
break;
}
}
}
/*
* 2b. Erase the entire flash by subsectors.
*/
static void test_erase_subsector(void)
{
uint32_t i;
int err;
for (i = 0; i < N25Q128_NUM_SUBSECTORS; ++i) {
err = n25q128_erase_subsector(ctx, i);
if (err != HAL_OK) {
uart_send_string("ERROR: n25q128_erase_subsector returned ");
uart_send_integer(err, 0);
uart_send_string("\r\n");
break;
}
}
}
/*
* 2c. Erase the entire flash in bulk.
*/
static void test_erase_bulk(void)
{
int err;
err = n25q128_erase_bulk(ctx);
if (err != HAL_OK) {
uart_send_string("ERROR: n25q128_erase_bulk returned ");
uart_send_integer(err, 0);
uart_send_string("\r\n");
}
}
/*
* 2d. Read the entire flash, verify erasure.
*/
static void test_verify_erase(void)
{
uint8_t vrfy_buf[N25Q128_PAGE_SIZE];
uint32_t i;
for (i = 0; i < sizeof(vrfy_buf); ++i)
vrfy_buf[i] = 0xFF;
_read_verify(vrfy_buf);
}
/*
* 3a. Write the entire flash with a pattern.
*/
static void test_write_page(void)
{
uint8_t write_buf[N25Q128_PAGE_SIZE];
uint32_t i;
int err;
for (i = 0; i < sizeof(write_buf); ++i)
write_buf[i] = i & 0xFF;
for (i = 0; i < N25Q128_NUM_PAGES; ++i) {
err = n25q128_write_page(ctx, i, write_buf);
if (err != HAL_OK) {
uart_send_string("ERROR: n25q128_write_page returned ");
uart_send_integer(err, 0);
uart_send_string(" for page ");
uart_send_integer(i, 0);
uart_send_string("\r\n");
break;
}
}
}
/*
* 3b. Read the entire flash, verify data.
*/
static void test_verify_write(void)
{
uint8_t vrfy_buf[N25Q128_PAGE_SIZE];
uint32_t i;
for (i = 0; i < sizeof(vrfy_buf); ++i)
vrfy_buf[i] = i & 0xFF;
_read_verify(vrfy_buf);
}
static void _time_check(char *label, const uint32_t t0, uint32_t n_rounds)
{
uint32_t t = HAL_GetTick() - t0;
uart_send_string(label);
uart_send_integer(t / 1000, 0);
uart_send_char('.');
uart_send_integer(t % 1000, 3);
uart_send_string(" sec");
if (n_rounds > 1) {
uart_send_string(" for ");
uart_send_integer(n_rounds, 0);
uart_send_string(" rounds, ");
uart_send_integer(t / n_rounds, 0);
uart_send_char('.');
uart_send_integer(((t % n_rounds) * 100) / n_rounds, 2);
uart_send_string(" ms each");
}
uart_send_string("\r\n");
}
#define time_check(_label_, _expr_, _n_) \
do { \
uint32_t _t = HAL_GetTick(); \
(_expr_); \
_time_check(_label_, _t, _n_); \
} while (0)
int main(void)
{
stm_init();
uart_set_default(STM_UART_MGMT);
if (n25q128_check_id(ctx) != HAL_OK) {
uart_send_string("ERROR: n25q128_check_id failed\r\n");
return 0;
}
uart_send_string("Starting...\r\n");
time_check("read page ", test_read_page(), N25Q128_NUM_PAGES);
time_check("read subsector ", test_read_subsector(), N25Q128_NUM_SUBSECTORS);
time_check("erase subsector ", test_erase_subsector(), N25Q128_NUM_SUBSECTORS);
time_check("erase sector ", test_erase_sector(), N25Q128_NUM_SECTORS);
time_check("erase bulk ", test_erase_bulk(), 1);
time_check("verify erase ", test_verify_erase(), N25Q128_NUM_PAGES);
time_check("write page ", test_write_page(), N25Q128_NUM_PAGES);
time_check("verify write ", test_verify_write(), N25Q128_NUM_PAGES);
uart_send_string("Done.\r\n\r\n");
return 0;
}