aboutsummaryrefslogblamecommitdiff
path: root/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2s_ex.c
blob: 3296c135aededd68d7546b0bdfbf9fc00bf44b73 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
110
/**
  ******************************************************************************
  * @file    stm32f4xx_hal_pwr.h
  * @author  MCD Application Team
  * @version V1.4.1
  * @date    09-October-2015
  * @brief   Header file of PWR HAL module.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */ 

/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F4xx_HAL_PWR_H
#define __STM32F4xx_HAL_PWR_H

#ifdef __cplusplus
 extern "C" {
#endif

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal_def.h"

/** @addtogroup STM32F4xx_HAL_Driver
  * @{
  */

/** @addtogroup PWR
  * @{
  */ 

/* Exported types ------------------------------------------------------------*/

/** @defgroup PWR_Exported_Types PWR Exported Types
  * @{
  */
   
/**
  * @brief  PWR PVD configuration structure definition
  */
typedef struct
{
  uint32_t PVDLevel;   /*!< PVDLevel: Specifies the PVD detection level.
                            This parameter can be a value of @ref PWR_PVD_detection_level */

  uint32_t Mode;      /*!< Mode: Specifies the operating mode for the selected pins.
                           This parameter can be a value of @ref PWR_PVD_Mode */
}PWR_PVDTypeDef;

/**
  * @}
  */

/* Exported constants --------------------------------------------------------*/
/** @defgroup PWR_Exported_Constants PWR Exported Constants
  * @{
  */
  
/** @defgroup PWR_WakeUp_Pins PWR WakeUp Pins
  * @{
  */
#define PWR_WAKEUP_PIN1                 ((uint32_t)0x00000100)
/**
  * @}
  */

/** @defgroup PWR_PVD_detection_level PWR PVD detection level
  * @{
  */ 
#define PWR_PVDLEVEL_0                  PWR_CR_PLS_LEV0
#define PWR_PVDLEVEL_1                  PWR_CR_PLS_LEV1
#define PWR_PVDLEVEL_2                  PWR_CR_PLS_LEV2
#define PWR_PVDLEVEL_3                  PWR_CR_PLS_LEV3
#define PWR_PVDLEVEL_4                  PWR_CR_PLS_LEV4
#define PWR_PVDLEVEL_5                  PWR_CR_PLS_LEV5
#define PWR_PVDLEVEL_6                  PWR_CR_PLS_LEV6
#define PWR_PVDLEVEL_7                  PWR_CR_PLS_LEV7/* External input analog voltage 
                                                          (Compare internally to VREFINT) */
/**
  * @}
  */   
 
/** @defgroup PWR_PVD_Mode PWR PVD Mode
  * @{
  */
#define PWR_PVD_MODE_NORMAL                 ((uint32_t)0x00000000)   /*!< basic mode is used */
#define PWR_PVD_MODE_IT_RISING              ((uint32_t)0x00010001)   /*!< External Interrupt Mode with Rising edge trigger detection */
#define PWR_PVD_MODE_IT_FALLING             ((uint32_t)0x00010002)   /*!< External Interrupt Mode with Falling edge trigger detection */
#define PWR_PVD_MODE_IT_RISING_FALLING      ((uint32_t)0x00010003)   /*!< External Interrupt Mode with Rising/Falling edge trigger detection */
#define PWR_PVD_MODE_EVENT_RISING           ((uint32_t)0x00020001)   /*!< Event Mode with Rising edge trigger detection */
#define PWR_PVD_MODE_EVENT_FALLING          ((uint32_t)0x00020002)   /*!< Event Mode with Falling edge trigger detection */
#define PWR_PVD_MODE_EVENT_RISING_FALLING   ((uint32_t)0x00020003)   /*!< Event Mode with Rising/Falling edge trigger detection */
/**
  * @}
  */


/** @defgroup PWR_Regulator_state_in_STOP_mode PWR Regulator state in SLEEP/STOP mode
  * @{
  */
#define PWR_MAINREGULATOR_ON                        ((uint32_t)0x00000000)
#define PWR_LOWPOWERREGULATOR_ON                    PWR_CR_LPDS
/**
  * @}
  */
    
/** @defgroup PWR_SLEEP_mode_entry PWR SLEEP mode entry
  * @{
  */
#define PWR_SLEEPENTRY_WFI              ((uint8_t)0x01)
#define PWR_SLEEPENTRY_WFE              ((uint8_t)0x02)
/**
  * @}
  */

/** @defgroup PWR_STOP_mode_entry PWR STOP mode entry
  * @{
  */
#define PWR_STOPENTRY_WFI               ((uint8_t)0x01)
#define PWR_STOPENTRY_WFE               ((uint8_t)0x02)
/**
  * @}
  */

/** @defgroup PWR_Flag PWR Flag
  * @{
  */
#define PWR_FLAG_WU                     PWR_CSR_WUF
#define PWR_FLAG_SB                     PWR_CSR_SBF
#define PWR_FLAG_PVDO                   PWR_CSR_PVDO
#define PWR_FLAG_BRR                    PWR_CSR_BRR
#def
/**
  ******************************************************************************
  * @file    stm32f4xx_hal_i2s_ex.c
  * @author  MCD Application Team
  * @version V1.3.2
  * @date    26-June-2015
  * @brief   I2S HAL module driver.
  *          This file provides firmware functions to manage the following
  *          functionalities of I2S extension peripheral:
  *           + Extension features Functions
  *
  @verbatim
  ==============================================================================
                    ##### I2S Extension features #####
  ==============================================================================
  [..]
     (#) In I2S full duplex mode, each SPI peripheral is able to manage sending and receiving
         data simultaneously using two data lines. Each SPI peripheral has an extended block
         called I2Sxext (i.e I2S2ext for SPI2 and I2S3ext for SPI3).
     (#) The extension block is not a full SPI IP, it is used only as I2S slave to
         implement full duplex mode. The extension block uses the same clock sources
         as its master.

     (#) Both I2Sx and I2Sx_ext can be configured as transmitters or receivers.

     [..]
       (@) Only I2Sx can deliver SCK and WS to I2Sx_ext in full duplex mode, where
         I2Sx can be I2S2 or I2S3.

                  ##### How to use this driver #####
 ===============================================================================
 [..]
   Three operation modes are available within this driver :

   *** Polling mode IO operation ***
   =================================
   [..]
     (+) Send and receive in the same time an amount of data in blocking mode using HAL_I2S_TransmitReceive()

   *** Interrupt mode IO operation ***
   ===================================
   [..]
     (+) Send and receive in the same time an amount of data in non blocking mode using HAL_I2S_TransmitReceive_IT()
     (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can
         add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback
     (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can
         add his own code by customization of function pointer HAL_I2S_TxCpltCallback
     (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can
         add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback
     (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can
         add his own code by customization of function pointer HAL_I2S_RxCpltCallback
     (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can
         add his own code by customization of function pointer HAL_I2S_ErrorCallback

   *** DMA mode IO operation ***
   ==============================
   [..]
     (+) Send and receive an amount of data in non blocking mode (DMA) using HAL_I2S_TransmitReceive_DMA()
     (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can
         add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback
     (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can
         add his own code by customization of function pointer HAL_I2S_TxCpltCallback
     (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can
         add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback
     (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can
         add his own code by customization of function pointer HAL_I2S_RxCpltCallback
     (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can
         add his own code by customization of function pointer HAL_I2S_ErrorCallback
     (+) Pause the DMA Transfer using HAL_I2S_DMAPause()
     (+) Resume the DMA Transfer using HAL_I2S_DMAResume()
     (+) Stop the DMA Transfer using HAL_I2S_DMAStop()

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"

/** @addtogroup STM32F4xx_HAL_Driver
  * @{
  */

/** @defgroup I2SEx I2SEx
  * @brief I2S HAL module driver
  * @{
  */

#ifdef HAL_I2S_MODULE_ENABLED

#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\
    defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\
    defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE)

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup I2SEx_Private_Functions
  * @{
  */
/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/
/** @defgroup I2SEx_Exported_Functions I2S Exported Functions
  * @{
  */

/** @defgroup I2SEx_Group1 Extension features functions
  *  @brief   Extension features functions
  *
@verbatim
 ===============================================================================
                       ##### Extension features Functions #####
 ===============================================================================
    [..]
    This subsection provides a set of functions allowing to manage the I2S data
    transfers.

    (#) There are two modes of transfer:
       (++) Blocking mode : The communication is performed in the polling mode.
            The status of all data processing is returned by the same function
            after finishing transfer.
       (++) No-Blocking mode : The communication is performed using Interrupts
            or DMA. These functions return the status of the transfer startup.
            The end of the data processing will be indicated through the
            dedicated I2S IRQ when using Interrupt mode or the DMA IRQ when
            using DMA mode.

    (#) Blocking mode functions are :
        (++) HAL_I2S_TransmitReceive()

    (#) No-Blocking mode functions with Interrupt are :
        (++) HAL_I2S_TransmitReceive_IT()

    (#) No-Blocking mode functions with DMA are :
        (++) HAL_I2S_TransmitReceive_DMA()

    (#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
        (++) HAL_I2S_TxCpltCallback()
        (++) HAL_I2S_RxCpltCallback()
        (++) HAL_I2S_ErrorCallback()

@endverbatim
  * @{
  */
/**
  * @brief Initializes the I2S according to the specified parameters
  *         in the I2S_InitTypeDef and create the associated handle.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s)
{
  uint32_t tmpreg = 0, i2sdiv = 2, i2sodd = 0, packetlength = 1;
  uint32_t tmp = 0, i2sclk = 0;

  /* Check the I2S handle allocation */
  if(hi2s == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the I2S parameters */
  assert_param(IS_I2S_MODE(hi2s->Init.Mode));
  assert_param(IS_I2S_STANDARD(hi2s->Init.Standard));
  assert_param(IS_I2S_DATA_FORMAT(hi2s->Init.DataFormat));
  assert_param(IS_I2S_MCLK_OUTPUT(hi2s->Init.MCLKOutput));
  assert_param(IS_I2S_AUDIO_FREQ(hi2s->Init.AudioFreq));
  assert_param(IS_I2S_CPOL(hi2s->Init.CPOL));
  assert_param(IS_I2S_CLOCKSOURCE(hi2s->Init.ClockSource));

  if(hi2s->State == HAL_I2S_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hi2s->Lock = HAL_UNLOCKED;
    /* Init the low level hardware : GPIO, CLOCK, CORTEX */
    HAL_I2S_MspInit(hi2s);
  }

  hi2s->State = HAL_I2S_STATE_BUSY;

  /*----------------------- SPIx I2SCFGR & I2SPR Configuration ---------------*/
  /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
  hi2s->Instance->I2SCFGR &= ~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \
                               SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \
                               SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD);
  hi2s->Instance->I2SPR = 0x0002;

  /* Get the I2SCFGR register value */
  tmpreg = hi2s->Instance->I2SCFGR;

  /* If the default frequency value has to be written, reinitialize i2sdiv and i2sodd */
  /* If the requested audio frequency is not the default, compute the prescaler */
  if(hi2s->Init.AudioFreq != I2S_AUDIOFREQ_DEFAULT)
  {
    /* Check the frame length (For the Prescaler computing) *******************/
    if(hi2s->Init.DataFormat != I2S_DATAFORMAT_16B)
    {
      /* Packet length is 32 bits */
      packetlength = 2;
    }

    /* Get I2S source Clock frequency  ****************************************/
    i2sclk = I2S_GetInputClock(hi2s);

    /* Compute the Real divider depending on the MCLK output state, with a floating point */
    if(hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE)
    {
      /* MCLK output is enabled */
      tmp = (uint32_t)(((((i2sclk / 256) * 10) / hi2s->Init.AudioFreq)) + 5);
    }
    else
    {
      /* MCLK output is disabled */
      tmp = (uint32_t)(((((i2sclk / (32 * packetlength)) *10 ) / hi2s->Init.AudioFreq)) + 5);
    }

    /* Remove the flatting point */
    tmp = tmp / 10;

    /* Check the parity of the divider */
    i2sodd = (uint32_t)(tmp & (uint32_t)1);

    /* Compute the i2sdiv prescaler */
    i2sdiv = (uint32_t)((tmp - i2sodd) / 2);

    /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */
    i2sodd = (uint32_t) (i2sodd << 8);
  }

  /* Test if the divider is 1 or 0 or greater than 0xFF */
  if((i2sdiv < 2) || (i2sdiv > 0xFF))
  {
    /* Set the default values */
    i2sdiv = 2;
    i2sodd = 0;
  }

  /* Write to SPIx I2SPR register the computed value */
  hi2s->Instance->I2SPR = (uint32_t)((uint32_t)i2sdiv | (uint32_t)(i2sodd | (uint32_t)hi2s->Init.MCLKOutput));

  /* Configure the I2S with the I2S_InitStruct values */
  tmpreg |= (uint32_t)(SPI_I2SCFGR_I2SMOD | hi2s->Init.Mode | hi2s->Init.Standard | hi2s->Init.DataFormat | hi2s->Init.CPOL);

#if defined(SPI_I2SCFGR_ASTRTEN)
  if (hi2s->Init.Standard == I2S_STANDARD_PCM_SHORT)
  {
  /* Write to SPIx I2SCFGR */
  hi2s->Instance->I2SCFGR = tmpreg | SPI_I2SCFGR_ASTRTEN;
  }
  else
  {
  /* Write to SPIx I2SCFGR */
  hi2s->Instance->I2SCFGR = tmpreg;
  }
#else
  /* Write to SPIx I2SCFGR */
  hi2s->Instance->I2SCFGR = tmpreg;
#endif

  /* Configure the I2S extended if the full duplex mode is enabled */
  assert_param(IS_I2S_FULLDUPLEX_MODE(hi2s->Init.FullDuplexMode));
  if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
  {
    /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
    I2SxEXT(hi2s->Instance)->I2SCFGR &= ~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \
                                          SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \
                                          SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD);
    I2SxEXT(hi2s->Instance)->I2SPR = 2;

    /* Get the I2SCFGR register value */
    tmpreg = I2SxEXT(hi2s->Instance)->I2SCFGR;

    /* Get the mode to be configured for the extended I2S */
    if((hi2s->Init.Mode == I2S_MODE_MASTER_TX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_TX))
    {
      tmp = I2S_MODE_SLAVE_RX;
    }
    else
    {
      if((hi2s->Init.Mode == I2S_MODE_MASTER_RX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_RX))
      {
        tmp = I2S_MODE_SLAVE_TX;
      }
    }

    /* Configure the I2S Slave with the I2S Master parameter values */
    tmpreg |= (uint32_t)(SPI_I2SCFGR_I2SMOD | tmp | hi2s->Init.Standard | hi2s->Init.DataFormat | hi2s->Init.CPOL);

    /* Write to SPIx I2SCFGR */
    I2SxEXT(hi2s->Instance)->I2SCFGR = tmpreg;
  }

  hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
  hi2s->State= HAL_I2S_STATE_READY;

  return HAL_OK;
}

/**
  * @brief Full-Duplex Transmit/Receive data in blocking mode.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @param pTxData: a 16-bit pointer to the Transmit data buffer.
  * @param pRxData: a 16-bit pointer to the Receive data buffer.
  * @param Size: number of data sample to be sent:
  * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
  *       configuration phase, the Size parameter means the number of 16-bit data length
  *       in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
  *       the Size parameter means the number of 16-bit data length.
  * @param Timeout: Timeout duration
  * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
  *       between Master and Slave(example: audio streaming).
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2SEx_TransmitReceive(I2S_HandleTypeDef *hi2s, uint16_t *pTxData, uint16_t *pRxData, uint16_t Size, uint32_t Timeout)
{
  uint32_t tickstart = 0;
  uint32_t tmp1 = 0, tmp2 = 0;

  if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0))
  {
    return  HAL_ERROR;
  }

  /* Check the I2S State */
  if(hi2s->State == HAL_I2S_STATE_READY)
  {
    tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
    tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
    /* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended
       is selected during the I2S configuration phase, the Size parameter means the number
       of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data
       frame is selected the Size parameter means the number of 16-bit data length. */
    if((tmp1 == I2S_DATAFORMAT_24B)|| \
       (tmp2 == I2S_DATAFORMAT_32B))
    {
      hi2s->TxXferSize = Size*2;
      hi2s->TxXferCount = Size*2;
      hi2s->RxXferSize = Size*2;
      hi2s->RxXferCount = Size*2;
    }
    else
    {
      hi2s->TxXferSize = Size;
      hi2s->TxXferCount = Size;
      hi2s->RxXferSize = Size;
      hi2s->RxXferCount = Size;
    }

    /* Process Locked */
    __HAL_LOCK(hi2s);

    /* Set the I2S State busy TX/RX */
    hi2s->State = HAL_I2S_STATE_BUSY_TX_RX;

    tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
    if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
    {
      /* Check if the I2S is already enabled: The I2S is kept enabled at the end of transaction
      to avoid the clock de-synchronization between Master and Slave. */
      if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
      {
        /* Enable I2Sext(receiver) before enabling I2Sx peripheral */
        I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE;

        /* Enable I2Sx peripheral */
        __HAL_I2S_ENABLE(hi2s);
      }

      while(hi2s->TxXferCount > 0)
      {
        /* Wait until TXE flag is set */
        if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, RESET, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        hi2s->Instance->DR = (*pTxData++);

        /* Get tick */
        tickstart = HAL_GetTick();

        /* Wait until RXNE flag is set */
        while((I2SxEXT(hi2s->Instance)->SR & SPI_SR_RXNE) != SPI_SR_RXNE)
        {
          if(Timeout != HAL_MAX_DELAY)
          {
            if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
            {
              /* Process Unlocked */
              __HAL_UNLOCK(hi2s);

              return HAL_TIMEOUT;
            }
          }
        }
        (*pRxData++) = I2SxEXT(hi2s->Instance)->DR;

        hi2s->TxXferCount--;
        hi2s->RxXferCount--;
      }
    }
    /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */
    else
    {
      /* Check if the I2S is already enabled */
      if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
      {
        /* Enable I2S peripheral before the I2Sext*/
        __HAL_I2S_ENABLE(hi2s);

        /* Enable I2Sext(transmitter) after enabling I2Sx peripheral */
        I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE;
      }
      else
      {
        /* Check if Master Receiver mode is selected */
        if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
        {
          /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read
          access to the SPI_SR register. */
          __HAL_I2S_CLEAR_OVRFLAG(hi2s);
        }
      }
      while(hi2s->TxXferCount > 0)
      {
        /* Get tick */
        tickstart = HAL_GetTick();

        /* Wait until TXE flag is set */
        while((I2SxEXT(hi2s->Instance)->SR & SPI_SR_TXE) != SPI_SR_TXE)
        {
          if(Timeout != HAL_MAX_DELAY)
          {
            if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
            {
              /* Process Unlocked */
              __HAL_UNLOCK(hi2s);

              return HAL_TIMEOUT;
            }
          }
        }
        I2SxEXT(hi2s->Instance)->DR = (*pTxData++);

        /* Wait until RXNE flag is set */
        if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXNE, RESET, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        (*pRxData++) = hi2s->Instance->DR;

        hi2s->TxXferCount--;
        hi2s->RxXferCount--;
      }
    }

    /* Set the I2S State ready */
    hi2s->State = HAL_I2S_STATE_READY;

    /* Process Unlocked */
    __HAL_UNLOCK(hi2s);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Full-Duplex Transmit/Receive data in non-blocking mode using Interrupt
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @param pTxData: a 16-bit pointer to the Transmit data buffer.
  * @param pRxData: a 16-bit pointer to the Receive data buffer.
  * @param Size: number of data sample to be sent:
  * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
  *       configuration phase, the Size parameter means the number of 16-bit data length
  *       in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
  *       the Size parameter means the number of 16-bit data length.
  * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
  *       between Master and Slave(example: audio streaming).
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pTxData, uint16_t *pRxData, uint16_t Size)
{
  uint32_t tmp1 = 0, tmp2 = 0;

  if(hi2s->State == HAL_I2S_STATE_READY)
  {
    if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0))
    {
      return  HAL_ERROR;
    }

    hi2s->pTxBuffPtr = pTxData;
    hi2s->pRxBuffPtr = pRxData;

    tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
    tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
    /* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended
       is selected during the I2S configuration phase, the Size parameter means the number
       of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data
       frame is selected the Size parameter means the number of 16-bit data length. */
    if((tmp1 == I2S_DATAFORMAT_24B)||\
       (tmp2 == I2S_DATAFORMAT_32B))
    {
      hi2s->TxXferSize = Size*2;
      hi2s->TxXferCount = Size*2;
      hi2s->RxXferSize = Size*2;
      hi2s->RxXferCount = Size*2;
    }
    else
    {
      hi2s->TxXferSize = Size;
      hi2s->TxXferCount = Size;
      hi2s->RxXferSize = Size;
      hi2s->RxXferCount = Size;
    }

    /* Process Locked */
    __HAL_LOCK(hi2s);

    hi2s->State = HAL_I2S_STATE_BUSY_TX_RX;
    hi2s->ErrorCode = HAL_I2S_ERROR_NONE;

    tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
    if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
    {
      /* Enable I2Sext RXNE and ERR interrupts */
      I2SxEXT(hi2s->Instance)->CR2 |= (I2S_IT_RXNE | I2S_IT_ERR);

      /* Enable I2Sx TXE and ERR interrupts */
      __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));

      /* Check if the I2S is already enabled */
      if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
      {
        /* Enable I2Sext(receiver) before enabling I2Sx peripheral */
        I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE;

        /* Enable I2Sx peripheral */
        __HAL_I2S_ENABLE(hi2s);
      }
    }
    /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */
    else
    {
      /* Enable I2Sext TXE and ERR interrupts */
      I2SxEXT(hi2s->Instance)->CR2 |= (I2S_IT_TXE |I2S_IT_ERR);

      /* Enable I2Sext RXNE and ERR interrupts */
      __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));

      /* Check if the I2S is already enabled */
      if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
      {
        /* Check if the I2S_MODE_MASTER_RX is selected */
        if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
        {
          /* Prepare the First Data before enabling the I2S */
          if(hi2s->TxXferCount != 0)
          {
            /* Transmit First data */
            I2SxEXT(hi2s->Instance)->DR = (*hi2s->pTxBuffPtr++);
            hi2s->TxXferCount--;

            if(hi2s->TxXferCount == 0)
            {
              /* Disable I2Sext TXE interrupt */
              I2SxEXT(hi2s->Instance)->CR2 &= ~I2S_IT_TXE;
            }
          }
        }
        /* Enable I2S peripheral */
        __HAL_I2S_ENABLE(hi2s);

        /* Enable I2Sext(transmitter) after enabling I2Sx peripheral */
        I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE;
      }
    }
    /* Process Unlocked */
    __HAL_UNLOCK(hi2s);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Full-Duplex Transmit/Receive data in non-blocking mode using DMA
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @param pTxData: a 16-bit pointer to the Transmit data buffer.
  * @param pRxData: a 16-bit pointer to the Receive data buffer.
  * @param Size: number of data sample to be sent:
  * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
  *       configuration phase, the Size parameter means the number of 16-bit data length
  *       in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
  *       the Size parameter means the number of 16-bit data length.
  * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
  *       between Master and Slave(example: audio streaming).
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pTxData, uint16_t *pRxData, uint16_t Size)
{
  uint32_t *tmp;
  uint32_t tmp1 = 0, tmp2 = 0;

  if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0))
  {
    return  HAL_ERROR;
  }

  if(hi2s->State == HAL_I2S_STATE_READY)
  {
    hi2s->pTxBuffPtr = pTxData;
    hi2s->pRxBuffPtr = pRxData;

    tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
    tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
    /* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended
       is selected during the I2S configuration phase, the Size parameter means the number
       of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data
       frame is selected the Size parameter means the number of 16-bit data length. */
    if((tmp1 == I2S_DATAFORMAT_24B)||\
       (tmp2 == I2S_DATAFORMAT_32B))
    {
      hi2s->TxXferSize = Size*2;
      hi2s->TxXferCount = Size*2;
      hi2s->RxXferSize = Size*2;
      hi2s->RxXferCount = Size*2;
    }
    else
    {
      hi2s->TxXferSize = Size;
      hi2s->TxXferCount = Size;
      hi2s->RxXferSize = Size;
      hi2s->RxXferCount = Size;
    }

    /* Process Locked */
    __HAL_LOCK(hi2s);

    hi2s->State = HAL_I2S_STATE_BUSY_TX_RX;
    hi2s->ErrorCode = HAL_I2S_ERROR_NONE;

    /* Set the I2S Rx DMA Half transfer complete callback */
    hi2s->hdmarx->XferHalfCpltCallback = I2S_DMARxHalfCplt;

    /* Set the I2S Rx DMA transfer complete callback */
    hi2s->hdmarx->XferCpltCallback = I2S_DMARxCplt;

    /* Set the I2S Rx DMA error callback */
    hi2s->hdmarx->XferErrorCallback = I2S_DMAError;

    /* Set the I2S Tx DMA Half transfer complete callback */
    hi2s->hdmatx->XferHalfCpltCallback = I2S_DMATxHalfCplt;

    /* Set the I2S Tx DMA transfer complete callback */
    hi2s->hdmatx->XferCpltCallback = I2S_DMATxCplt;

    /* Set the I2S Tx DMA error callback */
    hi2s->hdmatx->XferErrorCallback = I2S_DMAError;

    tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
    if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
    {
      /* Enable the Rx DMA Stream */
      tmp = (uint32_t*)&pRxData;
      HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&I2SxEXT(hi2s->Instance)->DR, *(uint32_t*)tmp, hi2s->RxXferSize);

      /* Enable Rx DMA Request */
      I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_RXDMAEN;

      /* Enable the Tx DMA Stream */
      tmp = (uint32_t*)&pTxData;
      HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t*)tmp, (uint32_t)&hi2s->Instance->DR, hi2s->TxXferSize);

      /* Enable Tx DMA Request */
      hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;

      /* Check if the I2S is already enabled */
      if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
      {
        /* Enable I2Sext(receiver) before enabling I2Sx peripheral */
        I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE;

        /* Enable I2S peripheral after the I2Sext */
        __HAL_I2S_ENABLE(hi2s);
      }
    }
    else
    {
      /* Enable the Tx DMA Stream */
      tmp = (uint32_t*)&pTxData;
      HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t*)tmp, (uint32_t)&I2SxEXT(hi2s->Instance)->DR, hi2s->TxXferSize);

      /* Enable Tx DMA Request */
      I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_TXDMAEN;

      /* Enable the Rx DMA Stream */
      tmp = (uint32_t*)&pRxData;
      HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->DR, *(uint32_t*)tmp, hi2s->RxXferSize);

      /* Enable Rx DMA Request */
      hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;

      /* Check if the I2S is already enabled */
      if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
      {
        /* Enable I2S peripheral before the I2Sext */
        __HAL_I2S_ENABLE(hi2s);

        /* Enable I2Sext(transmitter) after enabling I2Sx peripheral */
        I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE;
      }
      else
      {
        /* Check if Master Receiver mode is selected */
        if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
        {
          /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read
          access to the SPI_SR register. */
          __HAL_I2S_CLEAR_OVRFLAG(hi2s);
        }
      }
    }

    /* Process Unlocked */
    __HAL_UNLOCK(hi2s);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Pauses the audio stream playing from the Media.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s)
{
  /* Process Locked */
  __HAL_LOCK(hi2s);

  if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
  {
    /* Disable the I2S DMA Tx request */
    hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
  }
  else if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
  {
    /* Disable the I2S DMA Rx request */
    hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
  }
  else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
  {
    if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX))
    {
      /* Disable the I2S DMA Tx request */
      hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
      /* Disable the I2SEx Rx DMA Request */
      I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
    }
    else
    {
      /* Disable the I2S DMA Rx request */
      hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
      /* Disable the I2SEx Tx DMA Request */
      I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
    }
  }

  /* Process Unlocked */
  __HAL_UNLOCK(hi2s);

  return HAL_OK;
}

/**
  * @brief Resumes the audio stream playing from the Media.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s)
{
  /* Process Locked */
  __HAL_LOCK(hi2s);

  if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
  {
    /* Enable the I2S DMA Tx request */
    hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;
  }
  else if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
  {
    /* Enable the I2S DMA Rx request */
    hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;
  }
  else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
  {
    if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX))
    {
      /* Enable the I2S DMA Tx request */
      hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN;
      /* Disable the I2SEx Rx DMA Request */
      I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_RXDMAEN;
    }
    else
    {
      /* Enable the I2S DMA Rx request */
      hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN;
      /* Enable the I2SEx Tx DMA Request */
      I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_TXDMAEN;
    }
  }

  /* If the I2S peripheral is still not enabled, enable it */
  if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) == 0)
  {
    /* Enable I2S peripheral */
    __HAL_I2S_ENABLE(hi2s);
  }

  /* Process Unlocked */
  __HAL_UNLOCK(hi2s);

  return HAL_OK;
}

/**
  * @brief Resumes the audio stream playing from the Media.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s)
{
  /* Process Locked */
  __HAL_LOCK(hi2s);

  /* Disable the I2S Tx/Rx DMA requests */
  hi2s->Instance->CR2 &= ~SPI_CR2_TXDMAEN;
  hi2s->Instance->CR2 &= ~SPI_CR2_RXDMAEN;

  if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
  {
    /* Disable the I2S extended Tx/Rx DMA requests */
    I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
    I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
  }

  /* Abort the I2S DMA Stream tx */
  if(hi2s->hdmatx != NULL)
  {
    HAL_DMA_Abort(hi2s->hdmatx);
  }
  /* Abort the I2S DMA Stream rx */
  if(hi2s->hdmarx != NULL)
  {
    HAL_DMA_Abort(hi2s->hdmarx);
  }

  /* Disable I2S peripheral */
  __HAL_I2S_DISABLE(hi2s);

  if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
  {
    /* Disable the I2Sext peripheral */
    I2SxEXT(hi2s->Instance)->I2SCFGR &= ~SPI_I2SCFGR_I2SE;
  }
  hi2s->State = HAL_I2S_STATE_READY;

  /* Process Unlocked */
  __HAL_UNLOCK(hi2s);

  return HAL_OK;
}

/**
  * @brief  This function handles I2S interrupt request.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval None
  */
void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s)
{
  uint32_t tmp1 = 0, tmp2 = 0;
  __IO uint32_t tmpreg1 = 0;
  if(hi2s->Init.FullDuplexMode != I2S_FULLDUPLEXMODE_ENABLE)
  {
    if(hi2s->State == HAL_I2S_STATE_BUSY_RX)
    {
      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE);
      /* I2S in mode Receiver ------------------------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        I2S_Receive_IT(hi2s);
      }

      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
      /* I2S Overrun error interrupt occurred ---------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        __HAL_I2S_CLEAR_OVRFLAG(hi2s);
        hi2s->ErrorCode |= HAL_I2S_ERROR_OVR;
      }
    }

    if(hi2s->State == HAL_I2S_STATE_BUSY_TX)
    {
      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE);
      /* I2S in mode Tramitter -----------------------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        I2S_Transmit_IT(hi2s);
      }

      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
      /* I2S Underrun error interrupt occurred --------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        __HAL_I2S_CLEAR_UDRFLAG(hi2s);
        hi2s->ErrorCode |= HAL_I2S_ERROR_UDR;
      }
    }
  }
  else
  {
    tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
    if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
    {
      tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_RXNE;
      tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_RXNE;
      /* I2Sext in mode Receiver ---------------------------------------------*/
      if((tmp1 == SPI_SR_RXNE) && (tmp2 == I2S_IT_RXNE))
      {
        tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
        tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
        /* When the I2S mode is configured as I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX,
        the I2Sext RXNE interrupt will be generated to manage the full-duplex receive phase. */
        if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
        {
          I2SEx_TransmitReceive_IT(hi2s);
        }
      }

      tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_OVR;
      tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_ERR;
      /* I2Sext Overrun error interrupt occurred ------------------------------*/
      if((tmp1 == SPI_SR_OVR) && (tmp2 == I2S_IT_ERR))
      {
        /* Clear I2Sext OVR Flag */
        tmpreg1 = I2SxEXT(hi2s->Instance)->DR;
        tmpreg1 = I2SxEXT(hi2s->Instance)->SR;
        hi2s->ErrorCode |= HAL_I2SEX_ERROR_OVR;
        UNUSED(tmpreg1);
      }

      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE);
      /* I2S in mode Tramitter -----------------------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
        tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
        /* When the I2S mode is configured as I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX,
        the I2S TXE interrupt will be generated to manage the full-duplex transmit phase. */
        if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
        {
          I2SEx_TransmitReceive_IT(hi2s);
        }
      }

      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
      /* I2S Underrun error interrupt occurred --------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        __HAL_I2S_CLEAR_UDRFLAG(hi2s);
        hi2s->ErrorCode |= HAL_I2S_ERROR_UDR;
      }
    }
    /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */
    else
    {
      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE);
      /* I2S in mode Receiver ------------------------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
        tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
        /* When the I2S mode is configured as I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX,
        the I2S RXNE interrupt will be generated to manage the full-duplex receive phase. */
        if((tmp1 == I2S_MODE_MASTER_RX) || (tmp2 == I2S_MODE_SLAVE_RX))
        {
          I2SEx_TransmitReceive_IT(hi2s);
        }
      }

      tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR);
      tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR);
      /* I2S Overrun error interrupt occurred ---------------------------------*/
      if((tmp1 != RESET) && (tmp2 != RESET))
      {
        __HAL_I2S_CLEAR_OVRFLAG(hi2s);
        hi2s->ErrorCode |= HAL_I2S_ERROR_OVR;
      }

      tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_TXE;
      tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_TXE;
      /* I2Sext in mode Tramitter --------------------------------------------*/
      if((tmp1 == SPI_SR_TXE) && (tmp2 == I2S_IT_TXE))
      {
        tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
        tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
        /* When the I2S mode is configured as I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX,
        the I2Sext TXE interrupt will be generated to manage the full-duplex transmit phase. */
        if((tmp1 == I2S_MODE_MASTER_RX) || (tmp2 == I2S_MODE_SLAVE_RX))
        {
          I2SEx_TransmitReceive_IT(hi2s);
        }
      }

      tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_UDR;
      tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_ERR;
      /* I2Sext Underrun error interrupt occurred -----------------------------*/
      if((tmp1 == SPI_SR_UDR) && (tmp2 == I2S_IT_ERR))
      {
        /* Clear I2Sext UDR Flag */
        tmpreg1 = I2SxEXT(hi2s->Instance)->SR;
        hi2s->ErrorCode |= HAL_I2SEX_ERROR_UDR;
        UNUSED(tmpreg1);
      }
    }
  }

  /* Call the Error call Back in case of Errors */
  if(hi2s->ErrorCode != HAL_I2S_ERROR_NONE)
  {
    /* Set the I2S state ready to be able to start again the process */
    hi2s->State= HAL_I2S_STATE_READY;
    HAL_I2S_ErrorCallback(hi2s);
  }
}

/**
  * @}
  */


/**
  * @brief Full-Duplex Transmit/Receive data in non-blocking mode using Interrupt
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval HAL status
  */
HAL_StatusTypeDef I2SEx_TransmitReceive_IT(I2S_HandleTypeDef *hi2s)
{
  uint32_t tmp1 = 0, tmp2 = 0;

  if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
  {
    /* Process Locked */
    __HAL_LOCK(hi2s);

    tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
    /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
    if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX))
    {
      if(hi2s->TxXferCount != 0)
      {
        if(__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE) != RESET)
        {
          /* Transmit data */
          hi2s->Instance->DR = (*hi2s->pTxBuffPtr++);
          hi2s->TxXferCount--;

          if(hi2s->TxXferCount == 0)
          {
            /* Disable TXE interrupt */
            __HAL_I2S_DISABLE_IT(hi2s, I2S_IT_TXE);
          }
        }
      }

      if(hi2s->RxXferCount != 0)
      {
        if((I2SxEXT(hi2s->Instance)->SR & SPI_SR_RXNE) == SPI_SR_RXNE)
        {
          /* Receive data */
          (*hi2s->pRxBuffPtr++) = I2SxEXT(hi2s->Instance)->DR;
          hi2s->RxXferCount--;

          if(hi2s->RxXferCount == 0)
          {
            /* Disable I2Sext RXNE interrupt */
            I2SxEXT(hi2s->Instance)->CR2 &= ~I2S_IT_RXNE;
          }
        }
      }
    }
    /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */
    else
    {
      if(hi2s->TxXferCount != 0)
      {
        if((I2SxEXT(hi2s->Instance)->SR & SPI_SR_TXE) == SPI_SR_TXE)
        {
          /* Transmit data */
          I2SxEXT(hi2s->Instance)->DR = (*hi2s->pTxBuffPtr++);
          hi2s->TxXferCount--;

          if(hi2s->TxXferCount == 0)
          {
            /* Disable I2Sext TXE interrupt */
            I2SxEXT(hi2s->Instance)->CR2 &= ~I2S_IT_TXE;

            HAL_I2S_TxCpltCallback(hi2s);
          }
        }
      }
      if(hi2s->RxXferCount != 0)
      {
        if(__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE) != RESET)
        {
          /* Receive data */
          (*hi2s->pRxBuffPtr++) = hi2s->Instance->DR;
          hi2s->RxXferCount--;

          if(hi2s->RxXferCount == 0)
          {
            /* Disable RXNE interrupt */
            __HAL_I2S_DISABLE_IT(hi2s, I2S_IT_RXNE);

            HAL_I2S_RxCpltCallback(hi2s);
          }
        }
      }
    }

    tmp1 = hi2s->RxXferCount;
    tmp2 = hi2s->TxXferCount;
    if((tmp1 == 0) && (tmp2 == 0))
    {
      /* Disable I2Sx ERR interrupt */
      __HAL_I2S_DISABLE_IT(hi2s, I2S_IT_ERR);
      /* Disable I2Sext ERR interrupt */
      I2SxEXT(hi2s->Instance)->CR2 &= ~I2S_IT_ERR;

      hi2s->State = HAL_I2S_STATE_READY;
    }

    /* Process Unlocked */
    __HAL_UNLOCK(hi2s);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}
#endif /* STM32F40xxx/ STM32F41xxx/ STM32F42xxx/ STM32F43xxx/ STM32F401xx/ STM32F411xx */
/**
  * @brief DMA I2S transmit process complete callback
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
void I2S_DMATxCplt(DMA_HandleTypeDef *hdma)
{
  I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;

  if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
  {
    hi2s->TxXferCount = 0;

    /* Disable Tx DMA Request */
    hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\
    defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\
    defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE)
    if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
    {
      /* Disable Rx DMA Request for the slave*/
      I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
    }
#endif /* STM32F40xxx/ STM32F41xxx/ STM32F42xxx/ STM32F43xxx/ STM32F401xx/ STM32F411xx */
    if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
    {
      if(hi2s->RxXferCount == 0)
      {
        hi2s->State = HAL_I2S_STATE_READY;
      }
    }
    else
    {
      hi2s->State = HAL_I2S_STATE_READY;
    }
  }
  HAL_I2S_TxCpltCallback(hi2s);
}

/**
  * @brief DMA I2S receive process complete callback
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
void I2S_DMARxCplt(DMA_HandleTypeDef *hdma)
{
  I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;

  if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
  {
    /* Disable Rx DMA Request */
    hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN);
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\
    defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\
    defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE)
    if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE)
    {
      /* Disable Tx DMA Request for the slave*/
      I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN);
    }
#endif /* STM32F40xxx/ STM32F41xxx/ STM32F42xxx/ STM32F43xxx/ STM32F401xx/ STM32F411xx */
    hi2s->RxXferCount = 0;
    if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
    {
      if(hi2s->TxXferCount == 0)
      {
        hi2s->State = HAL_I2S_STATE_READY;
      }
    }
    else
    {
      hi2s->State = HAL_I2S_STATE_READY;
    }
  }
  HAL_I2S_RxCpltCallback(hi2s);
}

/**
  * @brief  Get I2S clock Input based on Source clock selection in RCC
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval I2S Clock Input
  */
uint32_t I2S_GetInputClock(I2S_HandleTypeDef *hi2s)
{
  /* This variable used to store the VCO Input (value in Hz) */
  uint32_t vcoinput = 0;
  /* This variable used to store the VCO Output (value in Hz) */
  uint32_t vcooutput = 0;
  /* This variable used to store the I2S_CK_x (value in Hz) */
  uint32_t i2ssourceclock = 0;

  /* Configure SAI Clock based on SAI source clock selection */
#if defined(STM32F446xx)
  switch(hi2s->Init.ClockSource)
  {
    case I2S_CLOCK_EXTERNAL :
    {
      /* Set the I2S clock to the external clock  value */
      i2ssourceclock = EXTERNAL_CLOCK_VALUE;
      break;
    }
    case I2S_CLOCK_PLL :
    {
      /* Configure the PLLI2S division factor */
      /* PLLI2S_VCO Input  = PLL_SOURCE/PLLI2SM */
      if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
      {
        /* Get the I2S source clock value */
        vcoinput = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM));
      }
      else
      {
        /* Get the I2S source clock value */
        vcoinput = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM));
      }

      /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */
      vcooutput = (uint32_t)(vcoinput * (((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6) & (RCC_PLLI2SCFGR_PLLI2SN >> 6)));
      /* I2S_CLK = PLLI2S_VCO Output/PLLI2SR */
      i2ssourceclock = (uint32_t)(vcooutput /(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28) & (RCC_PLLI2SCFGR_PLLI2SR >> 28)));
      break;
    }
    case I2S_CLOCK_PLLR :
    {
      /* Configure the PLLI2S division factor */
      /* PLL_VCO Input  = PLL_SOURCE/PLLM */
      if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
      {
        /* Get the I2S source clock value */
        vcoinput = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
      }
      else
      {
        /* Get the I2S source clock value */
        vcoinput = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
      }

      /* PLL_VCO Output = PLL_VCO Input * PLLN */
      vcooutput = (uint32_t)(vcoinput * (((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6) & (RCC_PLLCFGR_PLLN >> 6)));
      /* I2S_CLK = PLLI2S_VCO Output/PLLI2SR */
      i2ssourceclock = (uint32_t)(vcooutput /(((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> 28) & (RCC_PLLCFGR_PLLR >> 28)));
      break;
    }
    case I2S_CLOCK_PLLSRC :
    {
      /* Configure the PLLI2S division factor */
      /* PLL_VCO Input  = PLL_SOURCE/PLLM */
      if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
      {
        /* Get the I2S source clock value */
        i2ssourceclock = (uint32_t)(HSE_VALUE);
      }
      else
      {
        /* Get the I2S source clock value */
        i2ssourceclock = (uint32_t)(HSI_VALUE);
      }
      break;
    }
    default :
    {
      break;
    }
  }
#endif /* STM32F446xx */
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\
    defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\
    defined(STM32F401xC) || defined(STM32F401xE)

  /* If an external I2S clock has to be used, the specific define should be set
  in the project configuration or in the stm32f4xx_conf.h file */
  if(hi2s->Init.ClockSource == I2S_CLOCK_EXTERNAL)
  {
    /* Enable the External Clock selection */
    __HAL_RCC_I2S_CONFIG(RCC_I2SCLKSOURCE_EXT);

    /* Set the I2S clock to the external clock  value */
    i2ssourceclock = EXTERNAL_CLOCK_VALUE;
  }
  else
  {
    /* Configure the PLLI2S division factor */
    /* PLLI2S_VCO Input  = PLL_SOURCE/PLLM */
    if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
    {
      /* Get the I2S source clock value */
      vcoinput = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
    }
    else
    {
      /* Get the I2S source clock value */
      vcoinput = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
    }

    /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */
    vcooutput = (uint32_t)(vcoinput * (((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6) & (RCC_PLLI2SCFGR_PLLI2SN >> 6)));
    /* I2S_CLK = PLLI2S_VCO Output/PLLI2SR */
    i2ssourceclock = (uint32_t)(vcooutput /(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28) & (RCC_PLLI2SCFGR_PLLI2SR >> 28)));
  }
#endif /* STM32F40xxx || STM32F41xxx || STM32F42xxx || STM32F43xxx */

#if defined(STM32F411xE)

  /* If an external I2S clock has to be used, the specific define should be set
  in the project configuration or in the stm32f4xx_conf.h file */
  if(hi2s->Init.ClockSource == I2S_CLOCK_EXTERNAL)
  {
    /* Enable the External Clock selection */
    __HAL_RCC_I2S_CONFIG(RCC_I2SCLKSOURCE_EXT);

    /* Set the I2S clock to the external clock  value */
    i2ssourceclock = EXTERNAL_CLOCK_VALUE;
  }
  else
  {
    /* Configure the PLLI2S division factor */
    /* PLLI2S_VCO Input  = PLL_SOURCE/PLLI2SM */
    if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE)
    {
      /* Get the I2S source clock value */
      vcoinput = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM));
    }
    else
    {
      /* Get the I2S source clock value */
      vcoinput = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM));
    }

    /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */
    vcooutput = (uint32_t)(vcoinput * (((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6) & (RCC_PLLI2SCFGR_PLLI2SN >> 6)));
    /* I2S_CLK = PLLI2S_VCO Output/PLLI2SR */
    i2ssourceclock = (uint32_t)(vcooutput /(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28) & (RCC_PLLI2SCFGR_PLLI2SR >> 28)));
  }
#endif /* STM32F411xE */

  /* the return result is the value of SAI clock */
  return i2ssourceclock;

}
/**
  * @}
  */

#endif /* HAL_I2S_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/