aboutsummaryrefslogtreecommitdiff
path: root/ks_flash.c
blob: a53edcf9e26e0399c2e31d983d63d76650356c7d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
/*
 * ks_flash.c
 * ----------
 * Keystore implementation in flash memory.
 *
 * Authors: Rob Austein, Fredrik Thulin
 * Copyright (c) 2015-2016, NORDUnet A/S All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the NORDUnet nor the names of its contributors may
 *   be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#define HAL_OK LIBHAL_OK
#include "hal.h"
#include "hal_internal.h"
#undef HAL_OK

#define HAL_OK CMIS_HAL_OK
#include "stm-keystore.h"
#include "masterkey.h"
#undef HAL_OK

#include <string.h>
#include <assert.h>

#include "last_gasp_pin_internal.h"

#define PAGE_SIZE_MASK          (KEYSTORE_PAGE_SIZE - 1)

#define KEK_LENGTH              (bitsToBytes(256))

/*
 * Temporary hack: In-memory copy of entire (tiny) keystore database.
 * This is backwards compatability to let us debug without changing
 * too many moving parts at the same time, but will need to be
 * replaced by something that can handle a much larger number of keys,
 * which is one of the main points of the new keystore API.
 */

typedef struct {
  hal_ks_t ks;                  /* Must be first (C "subclassing") */

  hal_ks_pin_t wheel_pin;
  hal_ks_pin_t so_pin;
  hal_ks_pin_t user_pin;

#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
  hal_ks_key_t keys[HAL_STATIC_PKEY_STATE_BLOCKS];
#else
#warning No keys in keydb
#endif

} db_t;

static db_t db;

#define FLASH_SECTOR_1_OFFSET	(0 * KEYSTORE_SECTOR_SIZE)
#define FLASH_SECTOR_2_OFFSET	(1 * KEYSTORE_SECTOR_SIZE)

static inline uint32_t _active_sector_offset()
{
  /* XXX Load status bytes from both sectors and decide which is current. */
#warning Have not implemented two flash sectors yet
  return FLASH_SECTOR_1_OFFSET;
}

static inline uint32_t _get_key_offset(uint32_t num)
{
  /*
   * Reserve first two pages for flash sector state, PINs and future additions.
   * The three PINs alone currently occupy 3 * (64 + 16 + 4) bytes (252).
   */
  uint32_t offset = KEYSTORE_PAGE_SIZE * 2;
  uint32_t key_size = sizeof(*db.keys);
  uint32_t bytes_per_key = KEYSTORE_PAGE_SIZE * ((key_size / KEYSTORE_PAGE_SIZE) + 1);
  offset += num * bytes_per_key;
  return offset;
}

static hal_error_t ks_init(void)
{
  if (db.ks.driver == hal_ks_token_driver)
    return LIBHAL_OK;

  if (db.ks.driver != NULL)
    return HAL_ERROR_IMPOSSIBLE;

  uint8_t page_buf[KEYSTORE_PAGE_SIZE];
  uint32_t idx = 0;             /* Current index into db.keys[] */

  memset(&db, 0, sizeof(db));

  if (keystore_check_id() != 1)
    return HAL_ERROR_KEYSTORE_ACCESS;

  uint32_t active_sector_offset = _active_sector_offset();

  /*
   * The PINs are in the second page of the sector.
   * Caching all of these these makes some sense in any case.
   */

  uint32_t offset = active_sector_offset + KEYSTORE_PAGE_SIZE;
  if (keystore_read_data(offset, page_buf, sizeof(page_buf)) != 1)
    return HAL_ERROR_KEYSTORE_ACCESS;

  offset = 0;
  memcpy(&db.wheel_pin, page_buf + offset, sizeof(db.wheel_pin));

  offset += sizeof(db.wheel_pin);
  memcpy(&db.so_pin, page_buf + offset, sizeof(db.so_pin));

  offset += sizeof(db.so_pin);
  memcpy(&db.user_pin, page_buf + offset, sizeof(db.user_pin));

  /*
   * Now read out all the keys.  This is a temporary hack, in the long
   * run we want to pull these as they're needed, although depending
   * on how we organize the flash we might still need an initial scan
   * on startup to build some kind of in-memory index.
   */

  for (int i = 0; i < sizeof(db.keys) / sizeof(*db.keys); i++) {

    if ((offset = _get_key_offset(i)) > KEYSTORE_SECTOR_SIZE) {
      idx++;
      continue;
    }

    offset += active_sector_offset;

    if (keystore_read_data(offset, page_buf, sizeof(page_buf)) != 1)
      return HAL_ERROR_KEYSTORE_ACCESS;

    const hal_ks_key_t *key = (const hal_ks_key_t *) page_buf;

    if (key->in_use == 0xff) {
      /* unprogrammed data */
      idx++;
      continue;
    }

    if (key->in_use == 1) {
      uint8_t *dst = (uint8_t *) &db.keys[idx];
      uint32_t to_read = sizeof(*db.keys);

      /* We already have the first page in page_buf. Put it into place. */
      memcpy(dst, page_buf, sizeof(page_buf));
      to_read -= sizeof(page_buf);
      dst += sizeof(page_buf);

      /* Read as many more full pages as possible */
      if (keystore_read_data (offset + KEYSTORE_PAGE_SIZE, dst, to_read & ~PAGE_SIZE_MASK) != 1)
        return HAL_ERROR_KEYSTORE_ACCESS;
      dst += to_read & ~PAGE_SIZE_MASK;
      to_read &= PAGE_SIZE_MASK;

      if (to_read) {
        /* Partial last page. We can only read full pages so load it into page_buf. */
        if (keystore_read_data(offset + sizeof(*db.keys) - to_read, page_buf, sizeof(page_buf)) != 1)
          return HAL_ERROR_KEYSTORE_ACCESS;
        memcpy(dst, page_buf, to_read);
      }
    }
    idx++;
  }

  db.ks.driver = hal_ks_token_driver;

  return LIBHAL_OK;
}

static hal_error_t _write_data_to_flash(const uint32_t offset, const uint8_t *data, const size_t len)
{
  uint8_t page_buf[KEYSTORE_PAGE_SIZE];
  uint32_t to_write = len;

  if (keystore_write_data(offset, data, to_write & ~PAGE_SIZE_MASK) != 1)
    return HAL_ERROR_KEYSTORE_ACCESS;

  to_write &= PAGE_SIZE_MASK;
  if (to_write) {
    /*
     * Use page_buf to write the remaining bytes, since we must write a full page each time.
     */
    memset(page_buf, 0xff, sizeof(page_buf));
    memcpy(page_buf, data + len - to_write, to_write);
    if (keystore_write_data((offset + len) & ~PAGE_SIZE_MASK, page_buf, sizeof(page_buf)) != 1)
      return HAL_ERROR_KEYSTORE_ACCESS;
  }

  return LIBHAL_OK;
}

/*
 * Write the full DB to flash, PINs and all.
 */

static hal_error_t _write_db_to_flash(const uint32_t sector_offset)
{
  hal_error_t status;
  uint8_t page_buf[KEYSTORE_PAGE_SIZE];
  uint32_t i, offset;

  if (sizeof(db.wheel_pin) + sizeof(db.so_pin) + sizeof(db.user_pin) > sizeof(page_buf))
    return HAL_ERROR_BAD_ARGUMENTS;

  /* Put the three PINs into page_buf */
  offset = 0;
  memcpy(page_buf + offset, &db.wheel_pin, sizeof(db.wheel_pin));
  offset += sizeof(db.wheel_pin);
  memcpy(page_buf + offset, &db.so_pin, sizeof(db.so_pin));
  offset += sizeof(db.so_pin);
  memcpy(page_buf + offset, &db.user_pin, sizeof(db.user_pin));

  /* Write PINs into the second of the two reserved pages at the start of the sector. */
  offset = sector_offset + KEYSTORE_PAGE_SIZE;
  if ((status = _write_data_to_flash(offset, page_buf, sizeof(page_buf))) != LIBHAL_OK)
    return status;

  for (i = 0; i < sizeof(db.keys) / sizeof(*db.keys); i++) {
    offset = _get_key_offset(i);
    if (offset > KEYSTORE_SECTOR_SIZE)
      return HAL_ERROR_BAD_ARGUMENTS;

    offset += sector_offset;

    if ((status =_write_data_to_flash(offset, (uint8_t *) &db.keys[i], sizeof(*db.keys))) != LIBHAL_OK)
      return status;
  }

  return LIBHAL_OK;
}

static hal_error_t ks_open(const hal_ks_driver_t * const driver,
                                    hal_ks_t **ks)
{
  hal_error_t err;

  if (driver != hal_ks_token_driver || ks == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  if ((err = ks_init()) != LIBHAL_OK)
    return err;

  *ks = &db.ks;
  return LIBHAL_OK;
}

static hal_error_t ks_close(hal_ks_t *ks)
{
  if (ks != NULL && ks != &db.ks)
    return HAL_ERROR_BAD_ARGUMENTS;

  return LIBHAL_OK;
}

static inline int acceptable_key_type(const hal_key_type_t type)
{
  switch (type) {
  case HAL_KEY_TYPE_RSA_PRIVATE:
  case HAL_KEY_TYPE_EC_PRIVATE:
  case HAL_KEY_TYPE_RSA_PUBLIC:
  case HAL_KEY_TYPE_EC_PUBLIC:
    return 1;
  default:
    return 0;
  }
}

static inline hal_ks_key_t *find(const hal_uuid_t * const name)
{
  assert(name != NULL);

  for (int i = 0; i < sizeof(db.keys)/sizeof(*db.keys); i++)
    if (db.keys[i].in_use && hal_uuid_cmp(&db.keys[i].name, name) == 0)
      return &db.keys[i];

  return NULL;
}

static hal_error_t ks_fetch(hal_ks_t *ks,
                            hal_pkey_slot_t *slot,
                            uint8_t *der, size_t *der_len, const size_t der_max)
{
  if (ks != &db.ks || slot == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  const hal_ks_key_t * const k = find(&slot->name);

  if (k == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  slot->type  = k->type;
  slot->curve = k->curve;
  slot->flags = k->flags;

  if (der == NULL && der_len != NULL)
    *der_len = k->der_len;

  if (der != NULL) {

    uint8_t kek[KEK_LENGTH];
    size_t kek_len, der_len_;
    hal_error_t err;

    if (der_len == NULL)
      der_len = &der_len_;

    *der_len = der_max;

    if ((err = hal_get_kek(kek, &kek_len, sizeof(kek))) == LIBHAL_OK)
      err = hal_aes_keyunwrap(NULL, kek, kek_len, k->der, k->der_len, der, der_len);

    memset(kek, 0, sizeof(kek));

    if (err != LIBHAL_OK)
      return err;
  }

  return LIBHAL_OK;
}

static hal_error_t ks_list(hal_ks_t *ks,
                           hal_pkey_info_t *result,
                           unsigned *result_len,
                           const unsigned result_max)
{
  if (ks != &db.ks || result == NULL || result_len == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  *result_len = 0;

  for (int i = 0; i < sizeof(db.keys)/sizeof(*db.keys); i++) {

    if (!db.keys[i].in_use)
      continue;

    if (*result_len == result_max)
      return HAL_ERROR_RESULT_TOO_LONG;

    result[*result_len].type  = db.keys[i].type;
    result[*result_len].curve = db.keys[i].curve;
    result[*result_len].flags = db.keys[i].flags;
    result[*result_len].name  = db.keys[i].name;
    ++ *result_len;
  }

  return LIBHAL_OK;
}

/*
 * This function in particular really needs to be rewritten to take
 * advantage of the new keystore API.
 */

static hal_error_t ks_store(hal_ks_t *ks,
                            const hal_pkey_slot_t * const slot,
                            const uint8_t * const der, const size_t der_len)
{
  if (ks != &db.ks || slot == NULL || der == NULL || der_len == 0 || !acceptable_key_type(slot->type))
    return HAL_ERROR_BAD_ARGUMENTS;

  if (find(&slot->name) != NULL)
    return HAL_ERROR_KEY_NAME_IN_USE;

  int loc = -1;

  for (int i = 0; i < sizeof(db.keys)/sizeof(*db.keys); i++)
    if (!db.keys[i].in_use && loc < 0)
      loc = i;

  if (loc < 0)
    return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;

  hal_ks_key_t k;
  memset(&k, 0, sizeof(k));
  k.der_len = sizeof(k.der);

  uint8_t kek[KEK_LENGTH];
  size_t kek_len;

  hal_error_t err;

  if ((err = hal_get_kek(kek, &kek_len, sizeof(kek))) == LIBHAL_OK)
    err = hal_aes_keywrap(NULL, kek, kek_len, der, der_len, k.der, &k.der_len);

  memset(kek, 0, sizeof(kek));

  if (err != LIBHAL_OK)
    return err;

  k.name  = slot->name;
  k.type  = slot->type;
  k.curve = slot->curve;
  k.flags = slot->flags;

  uint8_t page_buf[KEYSTORE_PAGE_SIZE];

  uint32_t offset = _get_key_offset(loc);

  if (offset > KEYSTORE_SECTOR_SIZE)
    return HAL_ERROR_BAD_ARGUMENTS;

  uint32_t active_sector_offset = _active_sector_offset();

  offset += active_sector_offset;

  if (keystore_check_id() != 1)
    return HAL_ERROR_KEYSTORE_ACCESS;

  /*
   * Check if there is a key occupying this slot in the flash already.
   * This includes the case where we've zeroed a former key without
   * erasing the flash sector, so we have to check the flash itself,
   * we can't just look at the in-memory representation.
   */

  if (keystore_read_data(offset, page_buf, sizeof(page_buf)) != 1)
    return HAL_ERROR_KEYSTORE_ACCESS;

  const int unused_since_erasure = ((hal_ks_key_t *) page_buf)->in_use == 0xFF;

  db.keys[loc] = k;
  db.keys[loc].in_use = 1;

  if (unused_since_erasure) {

    /*
     * Key slot was unused in flash, so we can just write the new key there.
     */

    if ((err = _write_data_to_flash(offset, (uint8_t *) &k, sizeof(k))) != LIBHAL_OK)
      return err;

  } else {

    /*
     * Key slot in flash has been used.  We should be more clever than
     * this, but for now we just rewrite the whole freaking keystore.
     */

    /* TODO: Erase and write the database to the inactive sector, and then toggle active sector. */

    if (keystore_erase_sectors(active_sector_offset / KEYSTORE_SECTOR_SIZE,
                               active_sector_offset / KEYSTORE_SECTOR_SIZE) != 1)
      return HAL_ERROR_KEYSTORE_ACCESS;

    if ((err =_write_db_to_flash(active_sector_offset)) != LIBHAL_OK)
      return err;
  }

  return LIBHAL_OK;
}

static hal_error_t ks_delete(hal_ks_t *ks,
                             const hal_pkey_slot_t * const slot)
{
  if (ks != &db.ks || slot == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  hal_ks_key_t *k = find(&slot->name);

  if (k == NULL)
    return HAL_ERROR_KEY_NOT_FOUND;

  const int loc = k - db.keys;
  uint32_t offset = _get_key_offset(loc);

  if (loc < 0 || offset > KEYSTORE_SECTOR_SIZE)
    return HAL_ERROR_IMPOSSIBLE;

  offset += _active_sector_offset();

  memset(k, 0, sizeof(*k));

  /*
   * Setting bits to 0 never requires erasing flash. Just write it.
   */

  return _write_data_to_flash(offset, (uint8_t *) k, sizeof(*k));
}

const hal_ks_driver_t hal_ks_token_driver[1] = {{
  ks_open,
  ks_close,
  ks_store,
  ks_fetch,
  ks_delete,
  ks_list
}};

/*
 * The remaining functions aren't really part of the keystore API per se,
 * but they all involve non-key data which we keep in the keystore
 * because it's the flash we've got.
 */

hal_error_t hal_get_pin(const hal_user_t user,
                        const hal_ks_pin_t **pin)
{
  if (pin == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  hal_error_t err;

  if ((err = ks_init()) != LIBHAL_OK)
    return err;

  switch (user) {
  case HAL_USER_WHEEL:  *pin = &db.wheel_pin;  break;
  case HAL_USER_SO:	*pin = &db.so_pin;     break;
  case HAL_USER_NORMAL:	*pin = &db.user_pin;   break;
  default:		return HAL_ERROR_BAD_ARGUMENTS;
  }

  /*
   * If we were looking for the WHEEL PIN and it appears to be
   * completely unset, return the compiled-in last-gasp PIN.  This is
   * a terrible answer, but we need some kind of bootstrapping
   * mechanism.  Feel free to suggest something better.
   */

  uint8_t u00 = 0x00, uFF = 0xFF;
  for (int i = 0; i < sizeof((*pin)->pin); i++) {
    u00 |= (*pin)->pin[i];
    uFF &= (*pin)->pin[i];
  }
  for (int i = 0; i < sizeof((*pin)->salt); i++) {
    u00 |= (*pin)->salt[i];
    uFF &= (*pin)->salt[i];
  }
  if (user == HAL_USER_WHEEL && ((u00 == 0x00 && (*pin)->iterations == 0x00000000) ||
                                 (uFF == 0xFF && (*pin)->iterations == 0xFFFFFFFF)))
    *pin = &hal_last_gasp_pin;

  return LIBHAL_OK;
}

hal_error_t hal_set_pin(const hal_user_t user,
                        const hal_ks_pin_t * const pin)
{
  uint32_t active_sector_offset;

  if (pin == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  hal_ks_pin_t *p = NULL;

  switch (user) {
  case HAL_USER_WHEEL:  p = &db.wheel_pin;  break;
  case HAL_USER_SO:	p = &db.so_pin;     break;
  case HAL_USER_NORMAL:	p = &db.user_pin;   break;
  default:		return HAL_ERROR_BAD_ARGUMENTS;
  }

  memcpy(p, pin, sizeof(*p));

  active_sector_offset = _active_sector_offset();

  /* TODO: Could check if the PIN is currently all 0xff, in which case we wouldn't have to
   * erase and re-write the whole DB.
   */

  /* TODO: Erase and write the database to the inactive sector, and then toggle active sector. */
  if (keystore_erase_sectors(active_sector_offset / KEYSTORE_SECTOR_SIZE,
                             active_sector_offset / KEYSTORE_SECTOR_SIZE) != 1)
    return HAL_ERROR_KEYSTORE_ACCESS;

  return _write_db_to_flash(active_sector_offset);
}


hal_error_t hal_get_kek(uint8_t *kek,
                           size_t *kek_len,
                           const size_t kek_max)
{
  if (kek == NULL || kek_len == NULL || kek_max < bitsToBytes(128))
    return HAL_ERROR_BAD_ARGUMENTS;

  const size_t len = ((kek_max < bitsToBytes(192)) ? bitsToBytes(128) :
                      (kek_max < bitsToBytes(256)) ? bitsToBytes(192) :
                      bitsToBytes(256));

  hal_error_t err = masterkey_volatile_read(kek, len);

  if (err == LIBHAL_OK) {
    *kek_len = len;
    return LIBHAL_OK;
  }

  if (masterkey_flash_read(kek, len) == LIBHAL_OK) {
    *kek_len = len;
    return LIBHAL_OK;
  }

  /*
   * Both keystores returned an error, probably HAL_ERROR_MASTERKEY_NOT_SET.
   * I could try to be clever and compare the errors, but really the volatile
   * keystore is the important one (you shouldn't store the master key in
   * flash), so return that error.
   */
  return err;
}


/*
 * Local variables:
 * indent-tabs-mode: nil
 * End:
 */