aboutsummaryrefslogtreecommitdiff
path: root/hash.c
blob: 527c0950d00645130c7e447c704bdfe3fa50e51b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
/*
 * hash.c
 * ------
 * HAL interface to Cryptech hash cores.
 *
 * Authors: Joachim Str�mbergson, Paul Selkirk, Rob Austein
 * Copyright (c) 2014-2018, NORDUnet A/S All rights reserved.
 * Copyright: 2020-2021, The Commons Conservancy Cryptech Project
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the copyright holder nor the names of its
 *   contributors may be used to endorse or promote products derived from
 *   this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

#include "hal.h"
#include "hal_internal.h"

/*
 * Whether to include software implementations of the hash cores,
 * for use when the Verilog cores aren't available.
 */

#ifndef HAL_ENABLE_SOFTWARE_HASH_CORES
#define HAL_ENABLE_SOFTWARE_HASH_CORES 0
#endif

/*
 * Use only the software hash cores when running on remote host, without
 * access to the Verilog cores.
 */

#ifndef HAL_ONLY_USE_SOFTWARE_HASH_CORES
#define HAL_ONLY_USE_SOFTWARE_HASH_CORES 0
#endif

#if HAL_ONLY_USE_SOFTWARE_HASH_CORES && ! HAL_ENABLE_SOFTWARE_HASH_CORES
#error HAL_ONLY_USE_SOFTWARE_HASH_CORES && ! HAL_ENABLE_SOFTWARE_HASH_CORES
#endif

typedef hal_error_t (*sw_hash_core_t)(hal_hash_state_t *);

#if HAL_ENABLE_SOFTWARE_HASH_CORES

static hal_error_t sw_hash_core_sha1(  hal_hash_state_t *);
static hal_error_t sw_hash_core_sha256(hal_hash_state_t *);
static hal_error_t sw_hash_core_sha512(hal_hash_state_t *);

#else /* HAL_ENABLE_SOFTWARE_HASH_CORES */

#define sw_hash_core_sha1       ((sw_hash_core_t) 0)
#define sw_hash_core_sha256     ((sw_hash_core_t) 0)
#define sw_hash_core_sha512     ((sw_hash_core_t) 0)

#endif /* HAL_ENABLE_SOFTWARE_HASH_CORES */

#if HAL_ONLY_USE_SOFTWARE_HASH_CORES
#define hal_core_alloc(x, y, z) HAL_ERROR_CORE_NOT_FOUND
#define hal_core_free(x)
#endif

/*
 * HMAC magic numbers.
 */

#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c

/*
 * Driver.  This encapsulates whatever per-algorithm voodoo we need
 * this week.  At the moment, this is mostly Cryptech core addresses,
 * but this is subject to change without notice.
 */

struct hal_hash_driver {
  size_t length_length;                 /* Length of the length field */
  hal_addr_t block_addr;                /* Where to write hash blocks */
  hal_addr_t digest_addr;               /* Where to read digest */
  uint8_t ctrl_mode;                    /* Digest mode, for cores that have modes */
  sw_hash_core_t sw_core;               /* Software implementation, when enabled */
  size_t sw_word_size;                  /* Word size for software implementation */
};

/*
 * Hash state.  For now we assume that the only core state we need to
 * save and restore is the current digest value.
 */

struct hal_hash_state {
  hal_core_t *core;
  const hal_hash_descriptor_t *descriptor;
  const hal_hash_driver_t *driver;
  uint64_t msg_length_high;                     /* Total data hashed in this message */
  uint64_t msg_length_low;                      /* (128 bits in SHA-512 cases) */
  uint8_t block[HAL_MAX_HASH_BLOCK_LENGTH],     /* Block we're accumulating */
    core_state[HAL_MAX_HASH_STATE_LENGTH];      /* Saved core state */
  size_t block_used;                            /* How much of the block we've used */
  unsigned block_count;                         /* Blocks sent */
  unsigned flags;
  hal_core_lru_t pomace;                        /* Private data for hal_core_alloc() */
};

#define STATE_FLAG_STATE_ALLOCATED      0x1     /* State buffer in use */
#define STATE_FLAG_SOFTWARE_CORE        0x2     /* Use software rather than hardware core */
#define STATE_FLAG_FREE_CORE            0x4     /* Free core after use */

/*
 * HMAC state.  Right now this just holds the key block and a hash
 * context; if and when we figure out how PCLSR the hash cores, we
 * might want to save a lot more than that, and may also want to
 * reorder certain operations during HMAC initialization to get a
 * performance boost for things like PBKDF2.
 */

struct hal_hmac_state {
  hal_hash_state_t hash_state;               /* Hash state */
  uint8_t keybuf[HAL_MAX_HASH_BLOCK_LENGTH]; /* HMAC key */
};

/*
 * Drivers for known digest algorithms.
 */

static const hal_hash_driver_t sha1_driver = {
  SHA1_LENGTH_LEN, SHA1_ADDR_BLOCK, SHA1_ADDR_DIGEST, 0, sw_hash_core_sha1, sizeof(uint32_t)
};

static const hal_hash_driver_t sha224_driver = {
  SHA256_LENGTH_LEN, SHA256_ADDR_BLOCK, SHA256_ADDR_DIGEST, SHA256_MODE_SHA_224, sw_hash_core_sha256, sizeof(uint32_t)
};

static const hal_hash_driver_t sha256_driver = {
  SHA256_LENGTH_LEN, SHA256_ADDR_BLOCK, SHA256_ADDR_DIGEST, SHA256_MODE_SHA_256, sw_hash_core_sha256, sizeof(uint32_t)
};

static const hal_hash_driver_t sha512_224_driver = {
  SHA512_LENGTH_LEN, SHA512_ADDR_BLOCK, SHA512_ADDR_DIGEST, SHA512_MODE_SHA_512_224, sw_hash_core_sha512, sizeof(uint64_t)
};

static const hal_hash_driver_t sha512_256_driver = {
  SHA512_LENGTH_LEN, SHA512_ADDR_BLOCK, SHA512_ADDR_DIGEST, SHA512_MODE_SHA_512_256, sw_hash_core_sha512, sizeof(uint64_t)
};

static const hal_hash_driver_t sha384_driver = {
  SHA512_LENGTH_LEN, SHA512_ADDR_BLOCK, SHA512_ADDR_DIGEST, SHA512_MODE_SHA_384, sw_hash_core_sha512, sizeof(uint64_t)
};

static const hal_hash_driver_t sha512_driver = {
  SHA512_LENGTH_LEN, SHA512_ADDR_BLOCK, SHA512_ADDR_DIGEST, SHA512_MODE_SHA_512, sw_hash_core_sha512, sizeof(uint64_t)
};

static const hal_hash_driver_t sha3_224_driver = {
  SHA3_LENGTH_LEN, SHA3_ADDR_BLOCK, SHA3_ADDR_DIGEST, SHA3_MODE_SHA3_224, NULL, 0
};

static const hal_hash_driver_t sha3_256_driver = {
  SHA3_LENGTH_LEN, SHA3_ADDR_BLOCK, SHA3_ADDR_DIGEST, SHA3_MODE_SHA3_256, NULL, 0
};

static const hal_hash_driver_t sha3_384_driver = {
  SHA3_LENGTH_LEN, SHA3_ADDR_BLOCK, SHA3_ADDR_DIGEST, SHA3_MODE_SHA3_384, NULL, 0
};

static const hal_hash_driver_t sha3_512_driver = {
  SHA3_LENGTH_LEN, SHA3_ADDR_BLOCK, SHA3_ADDR_DIGEST, SHA3_MODE_SHA3_512, NULL, 0
};

/*
 * Digest algorithm identifiers: DER encoded full TLV of an
 * DigestAlgorithmIdentifier SEQUENCE including OID for the algorithm in
 * question and a NULL parameters value.
 *
 * See RFC 2313 and the NIST algorithm registry:
 * http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html
 *
 * The DER encoding is too complex to generate in the C preprocessor,
 * and we want these as compile-time constants, so we just supply the
 * raw hex encoding here.  If this gets seriously out of control we'll
 * write a script to generate a header file we can include.
 */

static const uint8_t
  dalgid_sha1[]       = { 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00 },
  dalgid_sha256[]     = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00 },
  dalgid_sha384[]     = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00 },
  dalgid_sha512[]     = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00 },
  dalgid_sha224[]     = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00 },
  dalgid_sha512_224[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x05, 0x05, 0x00 },
  dalgid_sha512_256[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x06, 0x05, 0x00 },
  dalgid_sha3_224[]   = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x07, 0x05, 0x00 },
  dalgid_sha3_256[]   = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x08, 0x05, 0x00 },
  dalgid_sha3_384[]   = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x09, 0x05, 0x00 },
  dalgid_sha3_512[]   = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x0a, 0x05, 0x00 };

/*
 * Descriptors.  Yes, the {hash,hmac}_state_length fields are a bit
 * repetitive given that they (currently) have the same value
 * regardless of algorithm, but we don't want to wire in that
 * assumption, so it's simplest to be explicit.
 */

const hal_hash_descriptor_t hal_hash_sha1[1] = {{
  HAL_DIGEST_ALGORITHM_SHA1,
  SHA1_BLOCK_LEN, SHA1_DIGEST_LEN, SHA1_DIGEST_LEN,
  sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
  dalgid_sha1, sizeof(dalgid_sha1),
  &sha1_driver, SHA1_NAME, 1
}};

const hal_hash_descriptor_t hal_hash_sha224[1] = {{
  HAL_DIGEST_ALGORITHM_SHA256,
  SHA256_BLOCK_LEN, SHA224_DIGEST_LEN, SHA224_DIGEST_LEN,
  sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
  dalgid_sha224, sizeof(dalgid_sha224),
  &sha224_driver, SHA256_NAME, 1
}};

const hal_hash_descriptor_t hal_hash_sha256[1] = {{
  HAL_DIGEST_ALGORITHM_SHA256,
  SHA256_BLOCK_LEN, SHA256_DIGEST_LEN, SHA256_DIGEST_LEN,
  sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
  dalgid_sha256, sizeof(dalgid_sha256),
  &sha256_driver, SHA256_NAME, 1
}};

const hal_hash_descriptor_t hal_hash_sha512_224[1] = {{
  HAL_DIGEST_ALGORITHM_SHA512_224,
  SHA512_BLOCK_LEN, SHA512_224_DIGEST_LEN, SHA512_224_DIGEST_LEN,
  sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
  dalgid_sha512_224, sizeof(dalgid_sha512_224),
  &sha512_224_driver, SHA512_NAME, 1
}};

const hal_hash_descriptor_t hal_hash_sha512_256[1] = {{
  HAL_DIGEST_ALGORITHM_SHA512_256,
  SHA512_BLOCK_LEN, SHA512_256_DIGEST_LEN, SHA512_256_DIGEST_LEN,
  sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
  dalgid_sha512_256, sizeof(dalgid_sha512_256),
  &sha512_256_driver, SHA512_NAME, 1
}};

const hal_hash_descriptor_t hal_hash_sha384[1] = {{
  HAL_DIGEST_ALGORITHM_SHA384,
  SHA512_BLOCK_LEN, SHA384_DIGEST_LEN, SHA384_DIGEST_LEN,
  sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
  dalgid_sha384, sizeof(dalgid_sha384),
  &sha384_driver, SHA512_NAME, 1
}};

const hal_hash_descriptor_t hal_hash_sha512[1] = {{
  HAL_DIGEST_ALGORITHM_SHA512,
  SHA512_BLOCK_LEN, SHA512_DIGEST_LEN, SHA512_DIGEST_LEN,
  sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
  dalgid_sha512, sizeof(dalgid_sha512),
  &sha512_driver, SHA512_NAME, 1
}};

const hal_hash_descriptor_t hal_hash_sha3_224[1] = {{
  HAL_DIGEST_ALGORITHM_SHA3_224,
  SHA3_224_BLOCK_LEN, SHA3_224_DIGEST_LEN, SHA3_STATE_LEN,
  sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
  dalgid_sha3_224, sizeof(dalgid_sha3_224),
  &sha3_224_driver, SHA3_NAME, 1
}};

const hal_hash_descriptor_t hal_hash_sha3_256[1] = {{
  HAL_DIGEST_ALGORITHM_SHA3_256,
  SHA3_256_BLOCK_LEN, SHA3_256_DIGEST_LEN, SHA3_STATE_LEN,
  sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
  dalgid_sha3_256, sizeof(dalgid_sha3_256),
  &sha3_256_driver, SHA3_NAME, 1
}};

const hal_hash_descriptor_t hal_hash_sha3_384[1] = {{
  HAL_DIGEST_ALGORITHM_SHA3_384,
  SHA3_384_BLOCK_LEN, SHA3_384_DIGEST_LEN, SHA3_STATE_LEN,
  sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
  dalgid_sha3_384, sizeof(dalgid_sha3_384),
  &sha3_384_driver, SHA3_NAME, 1
}};

const hal_hash_descriptor_t hal_hash_sha3_512[1] = {{
  HAL_DIGEST_ALGORITHM_SHA3_512,
  SHA3_512_BLOCK_LEN, SHA3_512_DIGEST_LEN, SHA3_STATE_LEN,
  sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
  dalgid_sha3_512, sizeof(dalgid_sha3_512),
  &sha3_512_driver, SHA3_NAME, 1
}};

static inline int is_sha3(hal_hash_state_t *state)
{
  switch (state->descriptor->digest_algorithm) {
  case HAL_DIGEST_ALGORITHM_SHA3_224:
  case HAL_DIGEST_ALGORITHM_SHA3_256:
  case HAL_DIGEST_ALGORITHM_SHA3_384:
  case HAL_DIGEST_ALGORITHM_SHA3_512:
    return 1;

  default:
    return 0;
  }
}

/*
 * Static state blocks.  This library is intended for a style of
 * embedded programming in which one avoids heap-based allocation
 * functions such as malloc() wherever possible and instead uses
 * static variables when just allocating on the stack won't do.
 *
 * The number of each kind of state block to be allocated this way
 * must be configured at compile-time.  Sorry, that's life in the
 * deeply embedded universe.
 */

#ifndef HAL_STATIC_HASH_STATE_BLOCKS
#define HAL_STATIC_HASH_STATE_BLOCKS 0
#endif

#ifndef HAL_STATIC_HMAC_STATE_BLOCKS
#define HAL_STATIC_HMAC_STATE_BLOCKS 0
#endif

#if HAL_STATIC_HASH_STATE_BLOCKS > 0
static hal_hash_state_t static_hash_state[HAL_STATIC_HASH_STATE_BLOCKS];
#endif

#if HAL_STATIC_HMAC_STATE_BLOCKS > 0
static hal_hmac_state_t static_hmac_state[HAL_STATIC_HMAC_STATE_BLOCKS];
#endif

/*
 * Debugging control.
 */

static int debug = 0;

void hal_hash_set_debug(int onoff)
{
  debug = onoff;
}

/*
 * Internal utilities to allocate static state blocks.
 */

static inline hal_hash_state_t *alloc_static_hash_state(void)
{

#if HAL_STATIC_HASH_STATE_BLOCKS > 0

  for (size_t i = 0; i < sizeof(static_hash_state)/sizeof(*static_hash_state); i++)
    if ((static_hash_state[i].flags & STATE_FLAG_STATE_ALLOCATED) == 0)
      return &static_hash_state[i];

#endif

  return NULL;
}

static inline hal_hmac_state_t *alloc_static_hmac_state(void)
{

#if HAL_STATIC_HMAC_STATE_BLOCKS > 0

  for (size_t i = 0; i < sizeof(static_hmac_state)/sizeof(*static_hmac_state); i++)
    if ((static_hmac_state[i].hash_state.flags & STATE_FLAG_STATE_ALLOCATED) == 0)
      return &static_hmac_state[i];

#endif

  return NULL;
}

/*
 * Internal utility to do a sort of byte-swapping memcpy() (sigh).
 * This is only used by the software hash cores, but it's simpler to define it unconditionally.
 */

static inline hal_error_t swytebop(void *out_, const void * const in_, const size_t n, const size_t w)
{
  const uint8_t  order[] = { 0x01, 0x02, 0x03, 0x04 };

  const uint8_t * const in = in_;
  uint8_t *out = out_;

  /* w must be a power of two */
  hal_assert(in != out && in != NULL && out != NULL && w && !(w & (w - 1)));

  switch (* (uint32_t *) order) {

  case 0x01020304:
    memcpy(out, in, n);
    break;

  case 0x04030201:
    for (size_t i = 0; i < n; i += w)
      for (size_t j = 0; j < w && i + j < n; j++)
        out[i + j] = in[i + w - j - 1];
    break;

  default:
    hal_assert((* (uint32_t *) order) == 0x01020304 || (* (uint32_t *) order) == 0x04030201);
  }
  return HAL_OK;
}

/*
 * Internal utility to check core against descriptor, including
 * attempting to locate an appropriate core if we weren't given one.
 */

static inline hal_error_t check_core(hal_core_t **core,
                                     const hal_hash_descriptor_t * const descriptor,
                                     unsigned *flags,
                                     hal_core_lru_t *pomace)
{
  if (core == NULL || descriptor == NULL || descriptor->driver == NULL || flags == NULL)
    return HAL_ERROR_IMPOSSIBLE;

  hal_error_t err = HAL_ERROR_CORE_NOT_FOUND;

#if !HAL_ONLY_USE_SOFTWARE_HASH_CORES

  if (*core != NULL)
    return HAL_OK;

  if (descriptor->can_restore_state &&
      (err = hal_core_alloc(descriptor->core_name, core, pomace)) == HAL_OK) {
    *flags |= STATE_FLAG_FREE_CORE;
    return HAL_OK;
  }

#endif

  if (*core != NULL)
    return HAL_ERROR_IMPOSSIBLE;

#if HAL_ENABLE_SOFTWARE_HASH_CORES

  if (descriptor->driver->sw_core && err == HAL_ERROR_CORE_NOT_FOUND) {
    *flags |= STATE_FLAG_SOFTWARE_CORE;
    return HAL_OK;
  }

#endif

  return err;
}

/*
 * Internal utility to do whatever checking we need of a descriptor,
 * then extract the driver pointer in a way that works nicely with
 * initialization of an automatic const pointer.
 *
 * Returns the driver pointer on success, NULL on failure.
 */

static inline const hal_hash_driver_t *check_driver(const hal_hash_descriptor_t * const descriptor)
{
  return descriptor == NULL ? NULL : descriptor->driver;
}

/*
 * Initialize hash state.
 */

hal_error_t hal_hash_initialize(hal_core_t *core,
                                const hal_hash_descriptor_t * const descriptor,
                                hal_hash_state_t **state_,
                                void *state_buffer, const size_t state_length)
{
  const hal_hash_driver_t * const driver = check_driver(descriptor);
  hal_hash_state_t *state = state_buffer;
  hal_core_lru_t pomace = 0;
  unsigned flags = 0;
  hal_error_t err;

  if (driver == NULL || state_ == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  if (state_buffer != NULL && state_length < descriptor->hash_state_length)
    return HAL_ERROR_BAD_ARGUMENTS;

  if ((err = check_core(&core, descriptor, &flags, &pomace)) != HAL_OK)
    return err;

  if ((flags & STATE_FLAG_FREE_CORE) != 0)
    hal_core_free(core);

  /* A dynamically allocated core that can't restore state isn't going to work. */
  if (!descriptor->can_restore_state && (flags & STATE_FLAG_FREE_CORE) != 0)
    return HAL_ERROR_BAD_ARGUMENTS;

  if (state_buffer == NULL && (state = alloc_static_hash_state()) == NULL)
      return HAL_ERROR_ALLOCATION_FAILURE;

  memset(state, 0, sizeof(*state));
  state->descriptor = descriptor;
  state->driver = driver;
  state->core = core;
  state->flags = flags | STATE_FLAG_STATE_ALLOCATED;
  state->pomace = pomace;

  *state_ = state;

  return HAL_OK;
}

/*
 * Clean up hash state.
 */

void hal_hash_cleanup(hal_hash_state_t **state)
{
  if (state == NULL || *state == NULL)
    return;

  memset(*state, 0, (*state)->descriptor->hash_state_length);

  *state = NULL;
}

#if ! HAL_ONLY_USE_SOFTWARE_HASH_CORES

/*
 * Read hash result from core.  At least for now, this also serves to
 * read current hash state from core.
 */

static hal_error_t hash_read_digest(const hal_core_t *core,
                                    const hal_hash_driver_t * const driver,
                                    uint8_t *digest,
                                    const size_t digest_length)
{
  hal_error_t err;

  hal_assert(digest != NULL && digest_length % 4 == 0);

  if ((err = hal_io_wait_valid(core)) != HAL_OK)
    return err;

  return hal_io_read(core, driver->digest_addr, digest, digest_length);
}

/*
 * Write hash state back to core.
 */

static hal_error_t hash_write_digest(const hal_core_t *core,
                                     const hal_hash_driver_t * const driver,
                                     const uint8_t * const digest,
                                     const size_t digest_length)
{
  hal_error_t err;

  hal_assert(digest != NULL && digest_length % 4 == 0);

  if ((err = hal_io_wait_ready(core)) != HAL_OK)
    return err;

  return hal_io_write(core, driver->digest_addr, digest, digest_length);
}

#endif

/*
 * Send one block to a core.
 */

static hal_error_t hash_write_block(hal_hash_state_t * const state)
{
  hal_assert(state != NULL && state->descriptor != NULL && state->driver != NULL);
  hal_assert(state->descriptor->block_length % 4 == 0);

  hal_assert(state->descriptor->digest_length <= sizeof(state->core_state) ||
             !state->descriptor->can_restore_state);

  if (debug)
    hal_log(HAL_LOG_DEBUG, "[ %s ]\n", state->block_count == 0 ? "init" : "next");

#if HAL_ENABLE_SOFTWARE_HASH_CORES
  if ((state->flags & STATE_FLAG_SOFTWARE_CORE) != 0)
    return state->driver->sw_core(state);
#endif

#if ! HAL_ONLY_USE_SOFTWARE_HASH_CORES
  hal_error_t err;

  if ((err = hal_io_wait_ready(state->core)) != HAL_OK)
    return err;

  if (state->descriptor->can_restore_state &&
      state->block_count != 0 &&
      (err = hash_write_digest(state->core, state->driver, state->core_state,
                               state->descriptor->state_length)) != HAL_OK)
    return err;

  if ((err = hal_io_write(state->core, state->driver->block_addr, state->block,
                          state->descriptor->block_length)) != HAL_OK)
    return err;

  uint8_t ctrl_cmd[4] = {0};

  /* reset the control register */
  if ((err = hal_io_write(state->core, ADDR_CTRL, ctrl_cmd, sizeof(ctrl_cmd))) != HAL_OK)
    return err;

  /* write the init or next command */
  ctrl_cmd[3] = state->block_count == 0 ? CTRL_INIT : CTRL_NEXT;
  ctrl_cmd[3] |= state->driver->ctrl_mode;
  if ((err = hal_io_write(state->core, ADDR_CTRL, ctrl_cmd, sizeof(ctrl_cmd))) != HAL_OK)
    return err;

  if (state->descriptor->can_restore_state &&
      (err = hash_read_digest(state->core, state->driver, state->core_state,
                              state->descriptor->state_length)) != HAL_OK)
    return err;

  return hal_io_wait_valid(state->core);
#endif

  /*NOTREACHED*/
  return HAL_ERROR_IMPOSSIBLE;
}

/*
 * Add data to hash.
 */

hal_error_t hal_hash_update(hal_hash_state_t *state,            /* Opaque state block */
                            const uint8_t * const data_buffer,  /* Data to be hashed */
                            size_t data_buffer_length)          /* Length of data_buffer */
{
  const uint8_t *p = data_buffer;
  hal_error_t err = HAL_OK;
  size_t n;

  if (state == NULL || data_buffer == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  if (data_buffer_length == 0)
    return HAL_OK;

  hal_assert(state->descriptor != NULL && state->driver != NULL);
  hal_assert(state->descriptor->block_length <= sizeof(state->block));

  if ((state->flags & STATE_FLAG_FREE_CORE) != 0) {
    err = hal_core_alloc(state->descriptor->core_name, &state->core, &state->pomace);
    if (err == HAL_ERROR_CORE_REASSIGNED) {
      state->core = NULL;
      err = hal_core_alloc(state->descriptor->core_name, &state->core, &state->pomace);
    }
    if (err != HAL_OK)
      return err;
  }

  while ((n = state->descriptor->block_length - state->block_used) <= data_buffer_length) {
    /*
     * We have enough data for another complete block.
     */
    if (debug)
      hal_log(HAL_LOG_DEBUG, "[ Full block, data_buffer_length %lu, used %lu, n %lu, msg_length %llu ]\n",
              (unsigned long) data_buffer_length, (unsigned long) state->block_used, (unsigned long) n, (unsigned long long)state->msg_length_low);
    memcpy(state->block + state->block_used, p, n);
    if ((state->msg_length_low += n) < n)
      state->msg_length_high++;
    state->block_used = 0;
    data_buffer_length -= n;
    p += n;
    if ((err = hash_write_block(state)) != HAL_OK)
      goto out;
    state->block_count++;
  }

  if (data_buffer_length > 0) {
    /*
     * Data left over, but not enough for a full block, stash it.
     */
    if (debug)
      hal_log(HAL_LOG_DEBUG, "[ Partial block, data_buffer_length %lu, used %lu, n %lu, msg_length %llu ]\n",
              (unsigned long) data_buffer_length, (unsigned long) state->block_used, (unsigned long) n, (unsigned long long)state->msg_length_low);
    hal_assert(data_buffer_length < n);
    memcpy(state->block + state->block_used, p, data_buffer_length);
    if ((state->msg_length_low += data_buffer_length) < data_buffer_length)
      state->msg_length_high++;
    state->block_used += data_buffer_length;
  }

out:
  if ((state->flags & STATE_FLAG_FREE_CORE) != 0)
    hal_core_free(state->core);
  return err;
}

/*
 * Finish hash and return digest.
 */

hal_error_t hal_hash_finalize(hal_hash_state_t *state,                  /* Opaque state block */
                              uint8_t *digest_buffer,                   /* Returned digest */
                              const size_t digest_buffer_length)        /* Length of digest_buffer */
{
  hal_error_t err;
  uint8_t *p;
  size_t n;
  size_t i;

  if (state == NULL || digest_buffer == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  hal_assert(state->descriptor != NULL && state->driver != NULL);

  if (digest_buffer_length < state->descriptor->digest_length)
    return HAL_ERROR_BAD_ARGUMENTS;

  hal_assert(state->descriptor->block_length <= sizeof(state->block));

  if ((state->flags & STATE_FLAG_FREE_CORE) != 0) {
    err = hal_core_alloc(state->descriptor->core_name, &state->core, &state->pomace);
    if (err == HAL_ERROR_CORE_REASSIGNED) {
      state->core = NULL;
      err = hal_core_alloc(state->descriptor->core_name, &state->core, &state->pomace);
    }
    if (err != HAL_OK)
      return err;
  }

  /*
   * Add padding, then pull result from the core
   */

  /* Initial pad byte.
   * SHA-3 appends an instance ID (01) to the message before padding,
   * so the effective start of padding is 011. Except that it uses
   * little-endian bit ordering, so it's xxxxx110. WTF.
   */
  state->block[state->block_used++] = is_sha3(state) ? 0x06 : 0x80;

  /* If not enough room for bit count, zero and push current block */
  if ((n = state->descriptor->block_length - state->block_used) < state->driver->length_length) {
    if (debug)
      hal_log(HAL_LOG_DEBUG, "[ Overflow block, used %lu, n %lu, msg_length %llu ]\n",
              (unsigned long) state->block_used, (unsigned long) n, (unsigned long long)state->msg_length_low);
    if (n > 0)
      memset(state->block + state->block_used, 0, n);
    if ((err = hash_write_block(state)) != HAL_OK)
      goto out;
    state->block_count++;
    state->block_used = 0;
  }

  /* Pad final block */
  n = state->descriptor->block_length - state->block_used;
  hal_assert(n >= state->driver->length_length);
  if (n > 0)
    memset(state->block + state->block_used, 0, n);
  if (debug)
    hal_log(HAL_LOG_DEBUG, "[ Final block, used %lu, n %lu, msg_length %llu ]\n",
            (unsigned long) state->block_used, (unsigned long) n, (unsigned long long)state->msg_length_low);
  p = state->block + state->descriptor->block_length;
  if (is_sha3(state)) {
    /* SHA-3 ends padding with a single 1 bit, rather than message length. */
    *--p |= 0x80;
  }
  else {
    uint64_t bit_length_low  = (state->msg_length_low  << 3);
    uint64_t bit_length_high = (state->msg_length_high << 3) | (state->msg_length_low >> 61);

    for (i = 0; (bit_length_low || bit_length_high) && i < state->driver->length_length; i++) {
      *--p = (uint8_t) (bit_length_low & 0xFF);
      bit_length_low >>= 8;
      if (bit_length_high) {
        bit_length_low |= ((bit_length_high & 0xFF) << 56);
        bit_length_high >>= 8;
      }
    }
  }

  /* Push final block */
  if ((err = hash_write_block(state)) != HAL_OK)
    goto out;
  state->block_count++;

  /* All data pushed to core, now we just need to read back the result */
#if HAL_ENABLE_SOFTWARE_HASH_CORES
  if ((state->flags & STATE_FLAG_SOFTWARE_CORE) != 0)
    return swytebop(digest_buffer, state->core_state, state->descriptor->digest_length,
                    state->driver->sw_word_size);
#endif
#if ! HAL_ONLY_USE_SOFTWARE_HASH_CORES
  if ((state->flags & STATE_FLAG_SOFTWARE_CORE) == 0)
    err = hash_read_digest(state->core, state->driver, digest_buffer, state->descriptor->digest_length);
#endif

out:
  if ((state->flags & STATE_FLAG_FREE_CORE) != 0)
    hal_core_free(state->core);
  return err;
}

/*
 * Initialize HMAC state.
 */

hal_error_t hal_hmac_initialize(hal_core_t *core,
                                const hal_hash_descriptor_t * const descriptor,
                                hal_hmac_state_t **state_,
                                void *state_buffer, const size_t state_length,
                                const uint8_t * const key, const size_t key_length)
{
  const hal_hash_driver_t * const driver = check_driver(descriptor);
  hal_hmac_state_t *state = state_buffer;
  hal_error_t err;
  size_t i;

  if (descriptor == NULL || driver == NULL || state_ == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  if (state_buffer != NULL && state_length < descriptor->hmac_state_length)
    return HAL_ERROR_BAD_ARGUMENTS;

  if (state_buffer == NULL && (state = alloc_static_hmac_state()) == NULL)
    return HAL_ERROR_ALLOCATION_FAILURE;

  hal_hash_state_t *h = &state->hash_state;

  hal_assert(descriptor->block_length <= sizeof(state->keybuf));

#if 0
  /*
   * RFC 2104 frowns upon keys shorter than the digest length.
   * ... but most of the test vectors fail this test!
   */

  if (key_length < descriptor->digest_length)
    return HAL_ERROR_UNSUPPORTED_KEY;
#endif

  if ((err = hal_hash_initialize(core, descriptor, &h, &state->hash_state,
                                 sizeof(state->hash_state))) != HAL_OK)
    goto fail;

  /*
   * If the supplied HMAC key is longer than the hash block length, we
   * need to hash the supplied HMAC key to get the real HMAC key.
   * Otherwise, we just use the supplied HMAC key directly.
   */

  memset(state->keybuf, 0, sizeof(state->keybuf));

  if (key_length <= descriptor->block_length)
    memcpy(state->keybuf, key, key_length);

  else if ((err = hal_hash_update(h, key, key_length))                         != HAL_OK ||
           (err = hal_hash_finalize(h, state->keybuf, sizeof(state->keybuf)))  != HAL_OK ||
           (err = hal_hash_initialize(core, descriptor, &h, &state->hash_state,
                                      sizeof(state->hash_state)))              != HAL_OK)
    goto fail;

  /*
   * XOR the key with the IPAD value, then start the inner hash.
   */

  for (i = 0; i < descriptor->block_length; i++)
    state->keybuf[i] ^= HMAC_IPAD;

  if ((err = hal_hash_update(h, state->keybuf, descriptor->block_length)) != HAL_OK)
    goto fail;

  /*
   * Prepare the key for the final hash.  Since we just XORed key with
   * IPAD, we need to XOR with both IPAD and OPAD to get key XOR OPAD.
   */

  for (i = 0; i < descriptor->block_length; i++)
    state->keybuf[i] ^= HMAC_IPAD ^ HMAC_OPAD;

  /*
   * If we had some good way of saving all of our state (including
   * state internal to the hash core), this would be a good place to
   * do it, since it might speed up algorithms like PBKDF2 which do
   * repeated HMAC operations using the same key.  Revisit this if and
   * when the hash cores support such a thing.
   */

  *state_ = state;

  return HAL_OK;

 fail:
  if (state_buffer == NULL)
    free(state);
  return err;
}

/*
 * Clean up HMAC state.
 */

void hal_hmac_cleanup(hal_hmac_state_t **state)
{
  if (state == NULL || *state == NULL)
    return;

  memset(*state, 0, (*state)->hash_state.descriptor->hmac_state_length);

  *state = NULL;
}

/*
 * Add data to HMAC.
 */

hal_error_t hal_hmac_update(hal_hmac_state_t *state,
                            const uint8_t * data, const size_t length)
{
  if (state == NULL || data == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  return hal_hash_update(&state->hash_state, data, length);
}

/*
 * Finish and return HMAC.
 */

hal_error_t hal_hmac_finalize(hal_hmac_state_t *state,
                              uint8_t *hmac, const size_t length)
{
  if (state == NULL || hmac == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  hal_hash_state_t *h = &state->hash_state;
  const hal_hash_descriptor_t *descriptor = h->descriptor;
  uint8_t d[HAL_MAX_HASH_DIGEST_LENGTH];
  hal_error_t err;

  hal_assert(descriptor != NULL && descriptor->digest_length <= sizeof(d));

  /*
   * Finish up inner hash and extract digest, then perform outer hash
   * to get HMAC.  Key was prepared for this in hal_hmac_initialize().
   *
   * For silly reasons, reusing the core value from the hash state
   * block here would require nontrivial refactoring, so for the
   * moment pass NULL and let the core allocator deal.  Fix someday.
   */

  if ((err = hal_hash_finalize(h, d, sizeof(d)))                           != HAL_OK ||
      (err = hal_hash_initialize(NULL, descriptor, &h, &state->hash_state,
                                 sizeof(state->hash_state)))               != HAL_OK ||
      (err = hal_hash_update(h, state->keybuf, descriptor->block_length))  != HAL_OK ||
      (err = hal_hash_update(h, d, descriptor->digest_length))             != HAL_OK ||
      (err = hal_hash_finalize(h, hmac, length))                           != HAL_OK)
    return err;

  return HAL_OK;
}

/*
 * Pull descriptor pointer from state block.
 */

const hal_hash_descriptor_t *hal_hash_get_descriptor(const hal_hash_state_t * const state)
{
  return state == NULL ? NULL : state->descriptor;
}

const hal_hash_descriptor_t *hal_hmac_get_descriptor(const hal_hmac_state_t * const state)
{
  return state == NULL ? NULL : state->hash_state.descriptor;
}

#if HAL_ENABLE_SOFTWARE_HASH_CORES

/*
 * Software implementations of hash cores.
 *
 * This is based in part on a mix of Tom St Denis's libtomcrypt C
 * implementation and Joachim Str�mbergson's Python models for the
 * Cryptech hash cores.
 *
 * This is not a particularly high performance implementation, as
 * we've given priority to portability and simplicity over speed.
 * We assume that any reasonable modern compiler can handle inline
 * functions, loop unrolling, and optimization of expressions which
 * become constant upon inlining and unrolling.
 */

/*
 * K constants for SHA-2.  SHA-1 only uses four K constants, which are handled inline
 * due to other peculiarities of the SHA-1 algorithm).
 */

static const uint32_t sha256_K[64] = {
    0x428A2F98UL, 0x71374491UL, 0xB5C0FBCFUL, 0xE9B5DBA5UL, 0x3956C25BUL, 0x59F111F1UL, 0x923F82A4UL, 0xAB1C5ED5UL,
    0xD807AA98UL, 0x12835B01UL, 0x243185BEUL, 0x550C7DC3UL, 0x72BE5D74UL, 0x80DEB1FEUL, 0x9BDC06A7UL, 0xC19BF174UL,
    0xE49B69C1UL, 0xEFBE4786UL, 0x0FC19DC6UL, 0x240CA1CCUL, 0x2DE92C6FUL, 0x4A7484AAUL, 0x5CB0A9DCUL, 0x76F988DAUL,
    0x983E5152UL, 0xA831C66DUL, 0xB00327C8UL, 0xBF597FC7UL, 0xC6E00BF3UL, 0xD5A79147UL, 0x06CA6351UL, 0x14292967UL,
    0x27B70A85UL, 0x2E1B2138UL, 0x4D2C6DFCUL, 0x53380D13UL, 0x650A7354UL, 0x766A0ABBUL, 0x81C2C92EUL, 0x92722C85UL,
    0xA2BFE8A1UL, 0xA81A664BUL, 0xC24B8B70UL, 0xC76C51A3UL, 0xD192E819UL, 0xD6990624UL, 0xF40E3585UL, 0x106AA070UL,
    0x19A4C116UL, 0x1E376C08UL, 0x2748774CUL, 0x34B0BCB5UL, 0x391C0CB3UL, 0x4ED8AA4AUL, 0x5B9CCA4FUL, 0x682E6FF3UL,
    0x748F82EEUL, 0x78A5636FUL, 0x84C87814UL, 0x8CC70208UL, 0x90BEFFFAUL, 0xA4506CEBUL, 0xBEF9A3F7UL, 0xC67178F2UL
};

static const uint64_t sha512_K[80] = {
  0x428A2F98D728AE22ULL, 0x7137449123EF65CDULL, 0xB5C0FBCFEC4D3B2FULL, 0xE9B5DBA58189DBBCULL,
  0x3956C25BF348B538ULL, 0x59F111F1B605D019ULL, 0x923F82A4AF194F9BULL, 0xAB1C5ED5DA6D8118ULL,
  0xD807AA98A3030242ULL, 0x12835B0145706FBEULL, 0x243185BE4EE4B28CULL, 0x550C7DC3D5FFB4E2ULL,
  0x72BE5D74F27B896FULL, 0x80DEB1FE3B1696B1ULL, 0x9BDC06A725C71235ULL, 0xC19BF174CF692694ULL,
  0xE49B69C19EF14AD2ULL, 0xEFBE4786384F25E3ULL, 0x0FC19DC68B8CD5B5ULL, 0x240CA1CC77AC9C65ULL,
  0x2DE92C6F592B0275ULL, 0x4A7484AA6EA6E483ULL, 0x5CB0A9DCBD41FBD4ULL, 0x76F988DA831153B5ULL,
  0x983E5152EE66DFABULL, 0xA831C66D2DB43210ULL, 0xB00327C898FB213FULL, 0xBF597FC7BEEF0EE4ULL,
  0xC6E00BF33DA88FC2ULL, 0xD5A79147930AA725ULL, 0x06CA6351E003826FULL, 0x142929670A0E6E70ULL,
  0x27B70A8546D22FFCULL, 0x2E1B21385C26C926ULL, 0x4D2C6DFC5AC42AEDULL, 0x53380D139D95B3DFULL,
  0x650A73548BAF63DEULL, 0x766A0ABB3C77B2A8ULL, 0x81C2C92E47EDAEE6ULL, 0x92722C851482353BULL,
  0xA2BFE8A14CF10364ULL, 0xA81A664BBC423001ULL, 0xC24B8B70D0F89791ULL, 0xC76C51A30654BE30ULL,
  0xD192E819D6EF5218ULL, 0xD69906245565A910ULL, 0xF40E35855771202AULL, 0x106AA07032BBD1B8ULL,
  0x19A4C116B8D2D0C8ULL, 0x1E376C085141AB53ULL, 0x2748774CDF8EEB99ULL, 0x34B0BCB5E19B48A8ULL,
  0x391C0CB3C5C95A63ULL, 0x4ED8AA4AE3418ACBULL, 0x5B9CCA4F7763E373ULL, 0x682E6FF3D6B2B8A3ULL,
  0x748F82EE5DEFB2FCULL, 0x78A5636F43172F60ULL, 0x84C87814A1F0AB72ULL, 0x8CC702081A6439ECULL,
  0x90BEFFFA23631E28ULL, 0xA4506CEBDE82BDE9ULL, 0xBEF9A3F7B2C67915ULL, 0xC67178F2E372532BULL,
  0xCA273ECEEA26619CULL, 0xD186B8C721C0C207ULL, 0xEADA7DD6CDE0EB1EULL, 0xF57D4F7FEE6ED178ULL,
  0x06F067AA72176FBAULL, 0x0A637DC5A2C898A6ULL, 0x113F9804BEF90DAEULL, 0x1B710B35131C471BULL,
  0x28DB77F523047D84ULL, 0x32CAAB7B40C72493ULL, 0x3C9EBE0A15C9BEBCULL, 0x431D67C49C100D4CULL,
  0x4CC5D4BECB3E42B6ULL, 0x597F299CFC657E2AULL, 0x5FCB6FAB3AD6FAECULL, 0x6C44198C4A475817ULL
};

/*
 * Various bit twiddling operations.  We use inline functions rather than macros to get better
 * data type checking, sane argument semantics, and simpler expressions (this stuff is
 * confusing enough without adding a lot of unnecessary C macro baggage).
 */

static inline uint32_t rot_l_32(uint32_t x, unsigned n) { return ((x << n) | (x >> (32 - n))); }
static inline uint32_t rot_r_32(uint32_t x, unsigned n) { return ((x >> n) | (x << (32 - n))); }
static inline uint32_t lsh_r_32(uint32_t x, unsigned n) { return (x >> n); }

static inline uint64_t rot_r_64(uint64_t x, unsigned n) { return ((x >> n) | (x << (64 - n))); }
static inline uint64_t lsh_r_64(uint64_t x, unsigned n) { return (x >> n); }

static inline uint32_t Choose_32(  uint32_t x, uint32_t y, uint32_t z) { return (z ^ (x & (y ^ z)));       }
static inline uint32_t Majority_32(uint32_t x, uint32_t y, uint32_t z) { return ((x & y) | (z & (x | y))); }
static inline uint32_t Parity_32(  uint32_t x, uint32_t y, uint32_t z) { return (x ^ y ^ z);               }

static inline uint64_t Choose_64(  uint64_t x, uint64_t y, uint64_t z) { return (z ^ (x & (y ^ z)));       }
static inline uint64_t Majority_64(uint64_t x, uint64_t y, uint64_t z) { return ((x & y) | (z & (x | y))); }

static inline uint32_t Sigma0_32(uint32_t x) { return rot_r_32(x,  2) ^ rot_r_32(x, 13) ^ rot_r_32(x, 22); }
static inline uint32_t Sigma1_32(uint32_t x) { return rot_r_32(x,  6) ^ rot_r_32(x, 11) ^ rot_r_32(x, 25); }
static inline uint32_t Gamma0_32(uint32_t x) { return rot_r_32(x,  7) ^ rot_r_32(x, 18) ^ lsh_r_32(x,  3); }
static inline uint32_t Gamma1_32(uint32_t x) { return rot_r_32(x, 17) ^ rot_r_32(x, 19) ^ lsh_r_32(x, 10); }

static inline uint64_t Sigma0_64(uint64_t x) { return rot_r_64(x, 28) ^ rot_r_64(x, 34) ^ rot_r_64(x, 39); }
static inline uint64_t Sigma1_64(uint64_t x) { return rot_r_64(x, 14) ^ rot_r_64(x, 18) ^ rot_r_64(x, 41); }
static inline uint64_t Gamma0_64(uint64_t x) { return rot_r_64(x,  1) ^ rot_r_64(x,  8) ^ lsh_r_64(x,  7); }
static inline uint64_t Gamma1_64(uint64_t x) { return rot_r_64(x, 19) ^ rot_r_64(x, 61) ^ lsh_r_64(x,  6); }

/*
 * Offset into hash state.  In theory, this should works out to compile-time constants after optimization.
 */

static inline int sha1_pos(int i, int j) { return (5 + j - (i % 5)) % 5; }
static inline int sha2_pos(int i, int j) { return (8 + j - (i % 8)) % 8; }

/*
 * Software implementation of SHA-1 block algorithm.
 */

static hal_error_t sw_hash_core_sha1(hal_hash_state_t *state)
{
  static const uint32_t iv[5] = {0x67452301UL, 0xefcdab89UL, 0x98badcfeUL, 0x10325476UL, 0xc3d2e1f0UL};
  hal_error_t err;

  if (state == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  uint32_t *H = (uint32_t *) state->core_state, S[5], W[80];

  if (state->block_count == 0)
    memcpy(H, iv, sizeof(iv));

  memcpy(S, H, sizeof(S));

  if ((err = swytebop(W, state->block, 16 * sizeof(*W), sizeof(*W))) != HAL_OK)
    return err;

  for (int i = 16; i < 80; i++)
    W[i] = rot_l_32(W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16], 1);

  for (int i = 0; i < 80; i++) {
    const int a = sha1_pos(i, 0), b = sha1_pos(i, 1), c = sha1_pos(i, 2), d = sha1_pos(i, 3), e = sha1_pos(i, 4);

    uint32_t f, k;
    if (i < 20)         f = Choose_32(   S[b], S[c], S[d]), k = 0x5A827999UL;
    else if (i < 40)    f = Parity_32(   S[b], S[c], S[d]), k = 0x6ED9EBA1UL;
    else if (i < 60)    f = Majority_32( S[b], S[c], S[d]), k = 0x8F1BBCDCUL;
    else                f = Parity_32(   S[b], S[c], S[d]), k = 0xCA62C1D6UL;

    if (debug)
      hal_log(HAL_LOG_DEBUG,
              "[Round %02d < a = 0x%08x, b = 0x%08x, c = 0x%08x, d = 0x%08x, e = 0x%08x, f = 0x%08x, k = 0x%08x, w = 0x%08x]\n",
              i, (unsigned)S[a], (unsigned)S[b], (unsigned)S[c], (unsigned)S[d], (unsigned)S[e], (unsigned)f, (unsigned)k, (unsigned)W[i]);

    S[e] = rot_l_32(S[a], 5) + f + S[e] + k + W[i];
    S[b] = rot_l_32(S[b], 30);

    if (debug)
      hal_log(HAL_LOG_DEBUG, "[Round %02d > a = 0x%08x, b = 0x%08x, c = 0x%08x, d = 0x%08x, e = 0x%08x]\n",
              i, (unsigned)S[a], (unsigned)S[b], (unsigned)S[c], (unsigned)S[d], (unsigned)S[e]);
  }

  for (int i = 0; i < 5; i++)
    H[i] += S[i];

  return HAL_OK;
}

/*
 * Software implementation of SHA-256 block algorithm, including support for same truncated variants
 * that the Cryptech Verilog SHA-256 core supports.
 */

static hal_error_t sw_hash_core_sha256(hal_hash_state_t *state)
{
  static const uint32_t sha224_iv[8] = {0xC1059ED8UL, 0x367CD507UL, 0x3070DD17UL, 0xF70E5939UL,
                                        0xFFC00B31UL, 0x68581511UL, 0x64F98FA7UL, 0xBEFA4FA4UL};

  static const uint32_t sha256_iv[8] = {0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL,
                                        0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL};

  hal_error_t err;

  if (state == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  uint32_t *H = (uint32_t *) state->core_state, S[8], W[64];

  if (state->block_count == 0) {
    switch (state->driver->ctrl_mode & SHA256_MODE_MASK) {
    case SHA256_MODE_SHA_224:   memcpy(H, sha224_iv, sizeof(sha224_iv)); break;
    case SHA256_MODE_SHA_256:   memcpy(H, sha256_iv, sizeof(sha256_iv)); break;
    default:                    return HAL_ERROR_IMPOSSIBLE;
    }
  }

  memcpy(S, H, sizeof(S));

  if ((err = swytebop(W, state->block, 16 * sizeof(*W), sizeof(*W))) != HAL_OK)
    return err;

  for (int i = 16; i < 64; i++)
    W[i] = Gamma1_32(W[i - 2]) + W[i - 7] + Gamma0_32(W[i - 15]) + W[i - 16];

  for (int i = 0; i < 64; i++) {
    const int a = sha2_pos(i, 0), b = sha2_pos(i, 1), c = sha2_pos(i, 2), d = sha2_pos(i, 3);
    const int e = sha2_pos(i, 4), f = sha2_pos(i, 5), g = sha2_pos(i, 6), h = sha2_pos(i, 7);

    const uint32_t t0 = S[h] + Sigma1_32(S[e]) + Choose_32(S[e], S[f], S[g]) + sha256_K[i] + W[i];
    const uint32_t t1 = Sigma0_32(S[a]) + Majority_32(S[a], S[b], S[c]);

    S[d] += t0;
    S[h] = t0 + t1;
  }

  for (int i = 0; i < 8; i++)
    H[i] += S[i];

  return HAL_OK;
}

/*
 * Software implementation of SHA-512 block algorithm, including support for same truncated variants
 * that the Cryptech Verilog SHA-512 core supports.
 */

static hal_error_t sw_hash_core_sha512(hal_hash_state_t *state)
{
  static const uint64_t
    sha512_iv[8]     = {0x6A09E667F3BCC908ULL, 0xBB67AE8584CAA73BULL, 0x3C6EF372FE94F82BULL, 0xA54FF53A5F1D36F1ULL,
                        0x510E527FADE682D1ULL, 0x9B05688C2B3E6C1FULL, 0x1F83D9ABFB41BD6BULL, 0x5BE0CD19137E2179ULL};
  static const uint64_t
    sha384_iv[8]     = {0xCBBB9D5DC1059ED8ULL, 0x629A292A367CD507ULL, 0x9159015A3070DD17ULL, 0x152FECD8F70E5939ULL,
                        0x67332667FFC00B31ULL, 0x8EB44A8768581511ULL, 0xDB0C2E0D64F98FA7ULL, 0x47B5481DBEFA4FA4ULL};
  static const uint64_t
    sha512_224_iv[8] = {0x8C3D37C819544DA2ULL, 0x73E1996689DCD4D6ULL, 0x1DFAB7AE32FF9C82ULL, 0x679DD514582F9FCFULL,
                        0x0F6D2B697BD44DA8ULL, 0x77E36F7304C48942ULL, 0x3F9D85A86A1D36C8ULL, 0x1112E6AD91D692A1ULL};
  static const uint64_t
    sha512_256_iv[8] = {0x22312194FC2BF72CULL, 0x9F555FA3C84C64C2ULL, 0x2393B86B6F53B151ULL, 0x963877195940EABDULL,
                        0x96283EE2A88EFFE3ULL, 0xBE5E1E2553863992ULL, 0x2B0199FC2C85B8AAULL, 0x0EB72DDC81C52CA2ULL};

  hal_error_t err;

  if (state == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  uint64_t *H = (uint64_t *) state->core_state, S[8], W[80];

  if (state->block_count == 0) {
    switch (state->driver->ctrl_mode & SHA512_MODE_MASK) {
    case SHA512_MODE_SHA_512_224:       memcpy(H, sha512_224_iv, sizeof(sha512_224_iv)); break;
    case SHA512_MODE_SHA_512_256:       memcpy(H, sha512_256_iv, sizeof(sha512_256_iv)); break;
    case SHA512_MODE_SHA_384:           memcpy(H, sha384_iv,     sizeof(sha384_iv));     break;
    case SHA512_MODE_SHA_512:           memcpy(H, sha512_iv,     sizeof(sha512_iv));     break;
    default:                            return HAL_ERROR_IMPOSSIBLE;
    }
  }

  memcpy(S, H, sizeof(S));

  if ((err = swytebop(W, state->block, 16 * sizeof(*W), sizeof(*W))) != HAL_OK)
    return err;

  for (int i = 16; i < 80; i++)
    W[i] = Gamma1_64(W[i - 2]) + W[i - 7] + Gamma0_64(W[i - 15]) + W[i - 16];

  for (int i = 0; i < 80; i++) {
    const int a = sha2_pos(i, 0), b = sha2_pos(i, 1), c = sha2_pos(i, 2), d = sha2_pos(i, 3);
    const int e = sha2_pos(i, 4), f = sha2_pos(i, 5), g = sha2_pos(i, 6), h = sha2_pos(i, 7);

    const uint64_t t0 = S[h] + Sigma1_64(S[e]) + Choose_64(S[e], S[f], S[g]) + sha512_K[i] + W[i];
    const uint64_t t1 = Sigma0_64(S[a]) + Majority_64(S[a], S[b], S[c]);

    S[d] += t0;
    S[h] = t0 + t1;
  }

  for (int i = 0; i < 8; i++)
    H[i] += S[i];

  return HAL_OK;
}

#endif /* HAL_ENABLE_SOFTWARE_HASH_CORES */

/*
 * "Any programmer who fails to comply with the standard naming, formatting,
 *  or commenting conventions should be shot.  If it so happens that it is
 *  inconvenient to shoot him, then he is to be politely requested to recode
 *  his program in adherence to the above standard."
 *                      -- Michael Spier, Digital Equipment Corporation
 *
 * Local variables:
 * indent-tabs-mode: nil
 * End:
 */