1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
|
/*
* aes_keywrap.c
* -------------
* Implementation of RFC 5649 over Cryptech AES core.
*
* Authors: Rob Austein
* Copyright (c) 2015-2018, NORDUnet A/S
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Note that there are two different block sizes involved here: the
* key wrap algorithm deals entirely with 64-bit blocks, while AES
* itself deals with 128-bit blocks. In practice, this is not as
* confusing as it sounds, because we combine two 64-bit blocks to
* create one 128-bit block just prior to performing an AES operation,
* then split the result back to 64-bit blocks immediately afterwards.
*/
#include <stdint.h>
#include <string.h>
#include "hal.h"
#include "hal_internal.h"
/*
* Enable use of the experimental keywrap core, if present.
*/
static int use_keywrap_core = 1;
int hal_aes_use_keywrap_core(int onoff)
{
use_keywrap_core = (onoff && hal_core_find(KEYWRAP_NAME, NULL) != NULL);
return use_keywrap_core;
}
/*
* How long the ciphertext will be for a given plaintext length.
* This rounds up the length to a multiple of 8, and adds 8 for the IV.
*/
size_t hal_aes_keywrap_ciphertext_length(const size_t plaintext_length)
{
return (plaintext_length + 15) & ~7;
}
/*
* Check the KEK, then load it into the AES core.
* Note that our AES core only supports 128 and 256 bit keys.
*
* This should work without modification for the experimental keywrap core.
*/
typedef enum { KEK_encrypting, KEK_decrypting } kek_action_t;
static unsigned _kek_load = 0, _kek_skip = 0;
hal_error_t hal_aes_keywrap_get_stats(unsigned *load, unsigned *skip)
{
if (load == NULL || skip == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
*load = _kek_load;
*skip = _kek_skip;
return HAL_OK;
}
void hal_aes_keywrap_reset_stats(void)
{
_kek_load = _kek_skip = 0;
}
hal_error_t hal_aes_keywrap_zero(hal_core_t *core)
{
const int free_core = (core == NULL);
hal_error_t err;
if (core == NULL &&
(err = hal_core_alloc(KEYWRAP_NAME, &core, NULL)) != HAL_OK)
return err;
uint8_t buf[4] = { 0, 0, 0, KEYWRAP_CTRL_ZERO };
err = hal_io_write(core, ADDR_CTRL, buf, sizeof(buf));
if (free_core)
hal_core_free(core);
return err;
}
hal_error_t hal_aes_keywrap_set_timeout(hal_core_t *core, uint32_t cycles)
{
const int free_core = (core == NULL);
hal_error_t err;
if (core == NULL &&
(err = hal_core_alloc(KEYWRAP_NAME, &core, NULL)) != HAL_OK)
return err;
union {
uint32_t word;
uint8_t bytes[4];
} buf;
buf.word = htonl(cycles);
err = hal_io_write(core, KEYWRAP_ADDR_TIMEOUT, buf.bytes, sizeof(buf));
if (free_core)
hal_core_free(core);
return err;
}
static inline int is_kek_loaded(const hal_core_t *core)
{
uint8_t buf[4];
if (hal_io_read(core, ADDR_STATUS, buf, sizeof(buf)) == HAL_OK)
return (buf[3] & KEYWRAP_STATUS_LOADED);
return 0;
}
static hal_error_t load_kek(const hal_core_t *core, const uint8_t *K, const size_t K_len, const kek_action_t action)
{
static size_t kek_len = 0;
uint8_t config[4];
hal_error_t err;
if (K != NULL) {
kek_len = K_len;
if ((err = hal_io_write(core, AES_ADDR_KEY0, K, K_len)) != HAL_OK)
return err;
}
else if (!use_keywrap_core || !is_kek_loaded(core)) {
++_kek_load;
uint8_t kek[KEK_LENGTH];
if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
err = hal_io_write(core, AES_ADDR_KEY0, kek, kek_len);
memset(kek, 0, sizeof(kek));
if (err != HAL_OK)
return err;
}
else {
++_kek_skip;
}
memset(config, 0, sizeof(config));
switch (kek_len) {
case bitsToBytes(128):
config[3] &= ~AES_CONFIG_KEYLEN;
break;
case bitsToBytes(256):
config[3] |= AES_CONFIG_KEYLEN;
break;
case bitsToBytes(192):
return HAL_ERROR_UNSUPPORTED_KEY;
default:
return HAL_ERROR_BAD_ARGUMENTS;
}
switch (action) {
case KEK_encrypting:
config[3] |= AES_CONFIG_ENCDEC;
break;
case KEK_decrypting:
config[3] &= ~AES_CONFIG_ENCDEC;
break;
default:
return HAL_ERROR_BAD_ARGUMENTS;
}
/*
* Load the KEK and tell the core to expand it.
*/
if ((err = hal_io_write(core, AES_ADDR_CONFIG, config, sizeof(config))) != HAL_OK ||
(err = hal_io_init(core)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* Use the experimental keywrap core to wrap/unwrap n 64-bit blocks of plaintext.
* The wrapped/unwrapped key is returned in the same buffer.
*/
static hal_error_t do_keywrap_core(const hal_core_t *core, uint8_t * const C, const size_t n)
{
hal_error_t err;
hal_assert(core != NULL && C != NULL && n > 0);
/* n is the number of 64-bit (8-byte) blocks in the input.
* KEYWRAP_LEN_R_DATA is the number of 4-byte data registers in the core.
*/
if (n == 0 || n > KEYWRAP_LEN_R_DATA * 2)
return HAL_ERROR_BAD_ARGUMENTS;
/* write the AIV to A */
if ((err = hal_io_write(core, KEYWRAP_ADDR_A0, C, 8)) != HAL_OK)
return err;
/* write the length to RLEN */
uint32_t nn = htonl(n);
if ((err = hal_io_write(core, KEYWRAP_ADDR_RLEN, (const uint8_t *)&nn, 4)) != HAL_OK)
return err;
/* write the data to R_DATA */
if ((err = hal_io_write(core, KEYWRAP_ADDR_R_DATA, C + 8, 8 * n)) != HAL_OK)
return err;
/* start the wrap/unwrap operation, and wait for it to complete */
if ((err = hal_io_next(core)) != HAL_OK ||
(err = hal_io_wait_ready(core)) != HAL_OK)
return err;
/* read the A registers */
if ((err = hal_io_read(core, KEYWRAP_ADDR_A0, C, 8)) != HAL_OK)
return err;
/* read the data to R_DATA */
if ((err = hal_io_read(core, KEYWRAP_ADDR_R_DATA, C + 8, 8 * n)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* Process one block. Since AES Key Wrap always deals with 64-bit
* half blocks and since the bus is going to break this up into 32-bit
* words no matter what we do, we can eliminate a few gratuitous
* memcpy() operations by receiving our arguments as two half blocks.
*
* Since the length of these half blocks is constant, there's no real
* point in passing the length as an argument, we'd just be checking a
* constant against a constant and a smart compiler will optimize
* the whole check out.
*
* Just be VERY careful if you change anything here.
*/
static hal_error_t do_block(const hal_core_t *core, uint8_t *b1, uint8_t *b2)
{
hal_error_t err;
hal_assert(b1 != NULL && b2 != NULL);
if ((err = hal_io_write(core, AES_ADDR_BLOCK0, b1, 8)) != HAL_OK ||
(err = hal_io_write(core, AES_ADDR_BLOCK2, b2, 8)) != HAL_OK ||
(err = hal_io_next(core)) != HAL_OK ||
(err = hal_io_wait_ready(core)) != HAL_OK ||
(err = hal_io_read(core, AES_ADDR_RESULT0, b1, 8)) != HAL_OK ||
(err = hal_io_read(core, AES_ADDR_RESULT2, b2, 8)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* Wrap plaintext Q using KEK K, placing result in C.
*
* Q and C can overlap. For encrypt-in-place, use Q = C + 8 (that is,
* leave 8 empty bytes before the plaintext).
*
* Use hal_aes_keywrap_ciphertext_length() to calculate the correct
* buffer size.
*/
hal_error_t hal_aes_keywrap(hal_core_t *core,
const uint8_t *K, const size_t K_len,
const uint8_t * const Q,
const size_t m,
uint8_t *C,
size_t *C_len)
{
const size_t calculated_C_len = hal_aes_keywrap_ciphertext_length(m);
const int free_core = (core == NULL);
hal_error_t err;
size_t n;
hal_assert(calculated_C_len % 8 == 0);
if (Q == NULL || C == NULL || C_len == NULL || *C_len < calculated_C_len)
return HAL_ERROR_BAD_ARGUMENTS;
/* If we're passed a core, we should figure out which one it is.
* In practice, core is always NULL, so this is UNTESTED CODE.
*/
if (core) {
const hal_core_info_t *info = hal_core_info(core);
if (memcmp(info->name, KEYWRAP_NAME, 8) == 0)
use_keywrap_core = 1;
else if (memcmp(info->name, AES_CORE_NAME, 8) == 0)
use_keywrap_core = 0;
else
/* I have no idea what this is */
return HAL_ERROR_BAD_ARGUMENTS;
}
else {
const char *core_name = (use_keywrap_core ? KEYWRAP_NAME : AES_CORE_NAME);
if ((err = hal_core_alloc(core_name, &core, NULL)) != HAL_OK)
return err;
}
if ((err = load_kek(core, K, K_len, KEK_encrypting)) != HAL_OK)
goto out;
*C_len = calculated_C_len;
if (C + 8 != Q)
memmove(C + 8, Q, m);
if (m % 8 != 0)
memset(C + 8 + m, 0, 8 - (m % 8));
C[0] = 0xA6;
C[1] = 0x59;
C[2] = 0x59;
C[3] = 0xA6;
C[4] = (m >> 24) & 0xFF;
C[5] = (m >> 16) & 0xFF;
C[6] = (m >> 8) & 0xFF;
C[7] = (m >> 0) & 0xFF;
n = calculated_C_len/8 - 1;
if (use_keywrap_core) {
err = do_keywrap_core(core, C, n);
}
else {
if (n == 1) {
if ((err = do_block(core, C, C + 8)) != HAL_OK)
goto out;
}
else {
for (size_t j = 0; j <= 5; j++) {
for (size_t i = 1; i <= n; i++) {
uint32_t t = n * j + i;
if ((err = do_block(core, C, C + i * 8)) != HAL_OK)
goto out;
C[7] ^= t & 0xFF; t >>= 8;
C[6] ^= t & 0xFF; t >>= 8;
C[5] ^= t & 0xFF; t >>= 8;
C[4] ^= t & 0xFF;
}
}
}
}
out:
if (K != NULL)
hal_aes_keywrap_zero(core);
if (free_core)
hal_core_free(core);
return err;
}
/*
* Unwrap ciphertext C using KEK K, placing result in Q.
*
* Q should be the same size as C. Q and C can overlap.
*/
hal_error_t hal_aes_keyunwrap(hal_core_t *core,
const uint8_t *K, const size_t K_len,
const uint8_t * const C,
const size_t C_len,
uint8_t *Q,
size_t *Q_len)
{
const int free_core = core == NULL;
hal_error_t err;
size_t n;
size_t m;
if (C == NULL || Q == NULL || C_len % 8 != 0 || C_len < 16 || Q_len == NULL || *Q_len < C_len)
return HAL_ERROR_BAD_ARGUMENTS;
/* If we're passed a core, we should figure out which one it is.
* In practice, core is always NULL, so this is UNTESTED CODE.
*/
if (core) {
const hal_core_info_t *info = hal_core_info(core);
if (memcmp(info->name, KEYWRAP_NAME, 8) == 0)
use_keywrap_core = 1;
else if (memcmp(info->name, AES_CORE_NAME, 8) != 0)
/* I have no idea what this is */
return HAL_ERROR_BAD_ARGUMENTS;
}
else {
const char *core_name = (use_keywrap_core ? KEYWRAP_NAME : AES_CORE_NAME);
if ((err = hal_core_alloc(core_name, &core, NULL)) != HAL_OK)
return err;
}
if ((err = load_kek(core, K, K_len, KEK_decrypting)) != HAL_OK)
goto out;
n = (C_len / 8) - 1;
if (Q != C)
memmove(Q, C, C_len);
if (use_keywrap_core) {
err = do_keywrap_core(core, Q, n);
}
else {
if (n == 1) {
if ((err = do_block(core, Q, Q + 8)) != HAL_OK)
goto out;
}
else {
for (long j = 5; j >= 0; j--) {
for (size_t i = n; i >= 1; i--) {
uint32_t t = n * j + i;
Q[7] ^= t & 0xFF; t >>= 8;
Q[6] ^= t & 0xFF; t >>= 8;
Q[5] ^= t & 0xFF; t >>= 8;
Q[4] ^= t & 0xFF;
if ((err = do_block(core, Q, Q + i * 8)) != HAL_OK)
goto out;
}
}
}
}
if (Q[0] != 0xA6 || Q[1] != 0x59 || Q[2] != 0x59 || Q[3] != 0xA6) {
err = HAL_ERROR_KEYWRAP_BAD_MAGIC;
goto out;
}
m = (((((Q[4] << 8) + Q[5]) << 8) + Q[6]) << 8) + Q[7];
if (m <= 8 * (n - 1) || m > 8 * n) {
err = HAL_ERROR_KEYWRAP_BAD_LENGTH;
goto out;
}
if (m % 8 != 0)
for (size_t i = m + 8; i < 8 * (n + 1); i++)
if (Q[i] != 0x00) {
err = HAL_ERROR_KEYWRAP_BAD_PADDING;
goto out;
}
*Q_len = m;
memmove(Q, Q + 8, m);
out:
if (K != NULL)
hal_aes_keywrap_zero(core);
if (free_core)
hal_core_free(core);
return err;
}
/*
* "Any programmer who fails to comply with the standard naming, formatting,
* or commenting conventions should be shot. If it so happens that it is
* inconvenient to shoot him, then he is to be politely requested to recode
* his program in adherence to the above standard."
* -- Michael Spier, Digital Equipment Corporation
*
* Local variables:
* indent-tabs-mode: nil
* End:
*/
|