/*
* ks_volatile.c
* -------------
* Keystore implementation in normal volatile internal memory.
*
* NB: This is only suitable for cases where you do not want the keystore
* to survive library exit, eg, for storing PKCS #11 session keys.
*
* Authors: Rob Austein
* Copyright (c) 2015-2016, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <assert.h>
#include "hal.h"
#include "hal_internal.h"
#define KEK_LENGTH (bitsToBytes(256))
#ifndef HAL_STATIC_PKEY_STATE_BLOCKS
#define HAL_STATIC_PKEY_STATE_BLOCKS 0
#endif
#ifndef HAL_STATIC_KS_VOLATILE_SLOTS
#define HAL_STATIC_KS_VOLATILE_SLOTS HAL_STATIC_PKEY_STATE_BLOCKS
#endif
#if HAL_STATIC_KS_VOLATILE_SLOTS > 0
/*
* In-memory keystore database. This should also be usable for
* mmap(), if and when we get around to rewriting that driver (and in
* which case this driver probably ought to be renamed ks_memory).
*/
typedef struct {
hal_key_type_t type;
hal_curve_name_t curve;
hal_key_flags_t flags;
size_t der_len;
uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
} ks_key_t;
typedef struct {
hal_ks_index_t ksi;
uint16_t _index[HAL_STATIC_KS_VOLATILE_SLOTS];
hal_uuid_t _names[HAL_STATIC_KS_VOLATILE_SLOTS];
ks_key_t keys[HAL_STATIC_KS_VOLATILE_SLOTS];
} db_t;
/*
* "Subclass" (well, what one can do in C) of hal_ks_t. This is
* separate from db_t primarily to simplify things like rewriting the
* old ks_mmap driver to piggy-back on the ks_volatile driver: we
* wouldn't want the hal_ks_t into the mmap()ed file.
*/
typedef struct {
hal_ks_t ks; /* Must be first */
db_t *db; /* Which memory-based keystore database */
} ks_t;
static db_t volatile_db;
static ks_t volatile_ks;
static inline ks_t *ks_to_ksv(hal_ks_t *ks)
{
return (ks_t *) ks;
}
static hal_error_t ks_init(db_t *db)
{
assert(db != NULL);
if (db->ksi.size) /* Already initialized */
return HAL_OK;
/*
* Set up keystore with empty index and full free list.
* Since this driver doesn't care about wear leveling,
* just populate the free list in block numerical order.
*/
db->ksi.size = HAL_STATIC_KS_VOLATILE_SLOTS;
db->ksi.used = 0;
db->ksi.index = db->_index;
db->ksi.names = db->_names;
for (int i = 0; i < HAL_STATIC_KS_VOLATILE_SLOTS; i++)
db->_index[i] = i;
const hal_error_t err = hal_ks_index_setup(&db->ksi);
if (err != HAL_OK)
db->ksi.size = 0; /* Mark uninitialized if setup failed */
return err;
}
static hal_error_t ks_volatile_init(const hal_ks_driver_t * const driver)
{
volatile_ks.ks.driver = driver;
volatile_ks.db = &volatile_db;
return ks_init(volatile_ks.db);
}
static hal_error_t ks_volatile_shutdown(const hal_ks_driver_t * const driver)
{
if (volatile_ks.ks.driver != driver)
return HAL_ERROR_KEYSTORE_ACCESS;
memset(&volatile_ks, 0, sizeof(volatile_ks));
return HAL_OK;
}
static hal_error_t ks_volatile_open(const hal_ks_driver_t * const driver,
hal_ks_t **ks)
{
assert(driver != NULL && ks != NULL);
*ks = &volatile_ks.ks;
return HAL_OK;
}
static hal_error_t ks_volatile_close(hal_ks_t *ks)
{
return HAL_OK;
}
static inline int acceptable_key_type(const hal_key_type_t type)
{
switch (type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
case HAL_KEY_TYPE_EC_PRIVATE:
case HAL_KEY_TYPE_RSA_PUBLIC:
case HAL_KEY_TYPE_EC_PUBLIC:
return 1;
default:
return 0;
}
}
static hal_error_t ks_store(hal_ks_t *ks,
const hal_pkey_slot_t * const slot,
const uint8_t * const der, const size_t der_len)
{
if (ks == NULL || slot == NULL || der == NULL || der_len == 0 || !acceptable_key_type(slot->type))
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
hal_error_t err;
unsigned b;
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
if ((err = hal_ks_index_add(&ksv->db->ksi, &slot->name, &b)) != HAL_OK)
return err;
uint8_t kek[KEK_LENGTH];
size_t kek_len;
ks_key_t k;
memset(&k, 0, sizeof(k));
k.der_len = sizeof(k.der);
k.type = slot->type;
k.curve = slot->curve;
k.flags = slot->flags;
if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
err = hal_aes_keywrap(NULL, kek, kek_len, der, der_len, k.der, &k.der_len);
memset(kek, 0, sizeof(kek));
if (err == HAL_OK)
ksv->db->keys[b] = k;
else
(void) hal_ks_index_delete(&ksv->db->ksi, &slot->name, NULL);
return err;
}
static hal_error_t ks_fetch(hal_ks_t *ks,
hal_pkey_slot_t *slot,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (ks == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
hal_error_t err;
unsigned b;
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
if ((err = hal_ks_index_find(&ksv->db->ksi, &slot->name, &b)) != HAL_OK)
return err;
const ks_key_t * const k = &ksv->db->keys[b];
slot->type = k->type;
slot->curve = k->curve;
slot->flags = k->flags;
if (der == NULL && der_len != NULL)
*der_len = k->der_len;
if (der != NULL) {
uint8_t kek[KEK_LENGTH];
size_t kek_len, der_len_;
hal_error_t err;
if (der_len == NULL)
der_len = &der_len_;
*der_len = der_max;
if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
err = hal_aes_keyunwrap(NULL, kek, kek_len, k->der, k->der_len, der, der_len);
memset(kek, 0, sizeof(kek));
if (err != HAL_OK)
return err;
}
return HAL_OK;
}
static hal_error_t ks_delete(hal_ks_t *ks,
const hal_pkey_slot_t * const slot)
{
if (ks == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
hal_error_t err;
unsigned b;
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
if ((err = hal_ks_index_delete(&ksv->db->ksi, &slot->name, &b)) != HAL_OK)
return err;
memset(&ksv->db->keys[b], 0, sizeof(ksv->db->keys[b]));
return HAL_OK;
}
static hal_error_t ks_list(hal_ks_t *ks,
hal_pkey_info_t *result,
unsigned *result_len,
const unsigned result_max)
{
if (ks == NULL || result == NULL || result_len == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
if (ksv->db->ksi.used > result_max)
return HAL_ERROR_RESULT_TOO_LONG;
for (int i = 0; i < ksv->db->ksi.used; i++) {
unsigned b = ksv->db->ksi.index[i];
result[i].name = ksv->db->ksi.names[b];
result[i].type = ksv->db->keys[b].type;
result[i].curve = ksv->db->keys[b].curve;
result[i].flags = ksv->db->keys[b].flags;
}
*result_len = ksv->db->ksi.used;
return HAL_OK;
}
const hal_ks_driver_t hal_ks_volatile_driver[1] = {{
ks_volatile_init,
ks_volatile_shutdown,
ks_volatile_open,
ks_volatile_close,
ks_store,
ks_fetch,
ks_delete,
ks_list
}};
#endif /* HAL_STATIC_KS_VOLATILE_SLOTS > 0 */
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/