/*
* ks_flash.c
* ----------
* Keystore implementation in flash memory.
*
* Authors: Rob Austein, Fredrik Thulin
* Copyright (c) 2015-2016, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stddef.h>
#include <string.h>
#include <assert.h>
#include "hal.h"
#include "hal_internal.h"
#include "last_gasp_pin_internal.h"
#define HAL_OK CMIS_HAL_OK
#include "stm-keystore.h"
#undef HAL_OK
/*
* Known block states.
*
* C does not guarantee any particular representation for enums, so
* including enums directly in the block header isn't safe. Instead,
* we use an access method which casts when reading from the header.
* Writing to the header isn't a problem, because C does guarantee
* that enum is compatible with *some* integer type, it just doesn't
* specify which one.
*/
typedef enum {
BLOCK_TYPE_ERASED = 0xFF, /* Pristine erased block (candidate for reuse) */
BLOCK_TYPE_ZEROED = 0x00, /* Zeroed block (recently used) */
BLOCK_TYPE_KEY = 0x55, /* Block contains key material */
BLOCK_TYPE_ATTR = 0x66, /* Block contains key attributes (overflow from key block) */
BLOCK_TYPE_PIN = 0xAA, /* Block contains PINs */
BLOCK_TYPE_UNKNOWN = -1, /* Internal code for "I have no clue what this is" */
} flash_block_type_t;
/*
* Block status.
*/
typedef enum {
BLOCK_STATUS_LIVE = 0x66, /* This is a live flash block */
BLOCK_STATUS_TOMBSTONE = 0x44, /* This is a tombstone left behind during an update */
BLOCK_STATUS_UNKNOWN = -1, /* Internal code for "I have no clue what this is" */
} flash_block_status_t;
/*
* Common header for all flash block types.
* A few of these fields are deliberately omitted from the CRC.
*/
typedef struct {
uint8_t block_type;
uint8_t block_status;
uint8_t total_chunks;
uint8_t this_chunk;
hal_crc32_t crc;
} flash_block_header_t;
/*
* Key block. Tail end of "der" field (after der_len) used for attributes.
*/
typedef struct {
flash_block_header_t header;
hal_uuid_t name;
hal_key_type_t type;
hal_curve_name_t curve;
hal_key_flags_t flags;
size_t der_len;
unsigned attributes_len;
uint8_t der[]; /* Must be last field -- C99 "flexible array member" */
} flash_key_block_t;
#define SIZEOF_FLASH_KEY_BLOCK_DER \
(KEYSTORE_SUBSECTOR_SIZE - offsetof(flash_key_block_t, der))
/*
* Key attribute overflow block (attributes which don't fit in der field of key block).
*/
typedef struct {
flash_block_header_t header;
hal_uuid_t name;
unsigned attributes_len;
uint8_t attributes[]; /* Must be last field -- C99 "flexible array member" */
} flash_attributes_block_t;
#define SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES \
(KEYSTORE_SUBSECTOR_SIZE - offsetof(flash_attributes_block_t, attributes))
/*
* PIN block. Also includes space for backing up the KEK when
* HAL_MKM_FLASH_BACKUP_KLUDGE is enabled.
*/
typedef struct {
flash_block_header_t header;
hal_ks_pin_t wheel_pin;
hal_ks_pin_t so_pin;
hal_ks_pin_t user_pin;
#if HAL_MKM_FLASH_BACKUP_KLUDGE
uint32_t kek_set;
uint8_t kek[KEK_LENGTH];
#endif
} flash_pin_block_t;
#define FLASH_KEK_SET 0x33333333
/*
* One flash block.
*/
typedef union {
uint8_t bytes[KEYSTORE_SUBSECTOR_SIZE];
flash_block_header_t header;
flash_key_block_t key;
flash_attributes_block_t attr;
flash_pin_block_t pin;
} flash_block_t;
/*
* In-memory cache.
*/
typedef struct {
unsigned blockno;
uint32_t lru;
flash_block_t block;
} cache_block_t;
/*
* In-memory database.
*
* The top-level structure is a static variable; the arrays are allocated at runtime
* using hal_allocate_static_memory() because they can get kind of large.
*/
#ifndef KS_FLASH_CACHE_SIZE
#define KS_FLASH_CACHE_SIZE 4
#endif
#define NUM_FLASH_BLOCKS KEYSTORE_NUM_SUBSECTORS
typedef struct {
hal_ks_t ks; /* Must be first (C "subclassing") */
hal_ks_index_t ksi;
hal_ks_pin_t wheel_pin;
hal_ks_pin_t so_pin;
hal_ks_pin_t user_pin;
uint32_t cache_lru;
cache_block_t *cache;
} db_t;
/*
* PIN block gets the all-zeros UUID, which will never be returned by
* the UUID generation code (by definition -- it's not a version 4 UUID).
*/
const static hal_uuid_t pin_uuid = {{0}};
/*
* The in-memory database structure itself is small, but the arrays it
* points to are large enough that they come from SDRAM allocated at
* startup.
*/
static db_t db;
/*
* Type safe casts.
*/
static inline flash_block_type_t block_get_type(const flash_block_t * const block)
{
assert(block != NULL);
return (flash_block_type_t) block->header.block_type;
}
static inline flash_block_status_t block_get_status(const flash_block_t * const block)
{
assert(block != NULL);
return (flash_block_status_t) block->header.block_status;
}
/*
* Pick unused or least-recently-used slot in our in-memory cache.
*
* Updating lru values is caller's problem: if caller is using a cache
* slot as a temporary buffer and there's no point in caching the
* result, leave the lru values alone and the right thing will happen.
*/
static inline flash_block_t *cache_pick_lru(void)
{
uint32_t best_delta = 0;
int best_index = 0;
for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) {
if (db.cache[i].blockno == ~0)
return &db.cache[i].block;
const uint32_t delta = db.cache_lru - db.cache[i].lru;
if (delta > best_delta) {
best_delta = delta;
best_index = i;
}
}
db.cache[best_index].blockno = ~0;
return &db.cache[best_index].block;
}
/*
* Find a block in our in-memory cache; return block or NULL if not present.
*/
static inline flash_block_t *cache_find_block(const unsigned blockno)
{
for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++)
if (db.cache[i].blockno == blockno)
return &db.cache[i].block;
return NULL;
}
/*
* Mark a block in our in-memory cache as being in current use.
*/
static inline void cache_mark_used(const flash_block_t * const block, const unsigned blockno)
{
for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) {
if (&db.cache[i].block == block) {
db.cache[i].blockno = blockno;
db.cache[i].lru = ++db.cache_lru;
return;
}
}
}
/*
* Release a block from the in-memory cache.
*/
static inline void cache_release(const flash_block_t * const block)
{
if (block != NULL)
cache_mark_used(block, ~0);
}
/*
* Generate CRC-32 for a block.
*
* This function needs to understand the structure of
* flash_block_header_t, so that it can skip over fields that
* shouldn't be included in the CRC.
*/
static hal_crc32_t calculate_block_crc(const flash_block_t * const block)
{
assert(block != NULL);
hal_crc32_t crc = hal_crc32_init();
crc = hal_crc32_update(crc, &block->header.block_type,
sizeof(block->header.block_type));
crc = hal_crc32_update(crc, &block->header.total_chunks,
sizeof(block->header.total_chunks));
crc = hal_crc32_update(crc, &block->header.this_chunk,
sizeof(block->header.this_chunk));
crc = hal_crc32_update(crc, block->bytes + sizeof(flash_block_header_t),
sizeof(*block) - sizeof(flash_block_header_t));
return hal_crc32_finalize(crc);
}
/*
* Calculate block offset.
*/
static inline uint32_t block_offset(const unsigned blockno)
{
return blockno * KEYSTORE_SUBSECTOR_SIZE;
}
/*
* Read a flash block.
*
* Flash read on the Alpha is slow enough that it pays to check the
* first page before reading the rest of the block.
*/
static hal_error_t block_read(const unsigned blockno, flash_block_t *block)
{
if (block == NULL || blockno >= NUM_FLASH_BLOCKS || sizeof(*block) != KEYSTORE_SUBSECTOR_SIZE)
return HAL_ERROR_IMPOSSIBLE;
/* Sigh, magic numeric return codes */
if (keystore_read_data(block_offset(blockno),
block->bytes,
KEYSTORE_PAGE_SIZE) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
switch (block_get_type(block)) {
case BLOCK_TYPE_ERASED:
case BLOCK_TYPE_ZEROED:
return HAL_OK;
case BLOCK_TYPE_KEY:
case BLOCK_TYPE_PIN:
case BLOCK_TYPE_ATTR:
break;
default:
return HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE;
}
switch (block_get_status(block)) {
case BLOCK_STATUS_LIVE:
case BLOCK_STATUS_TOMBSTONE:
break;
default:
return HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE;
}
/* Sigh, magic numeric return codes */
if (keystore_read_data(block_offset(blockno) + KEYSTORE_PAGE_SIZE,
block->bytes + KEYSTORE_PAGE_SIZE,
sizeof(*block) - KEYSTORE_PAGE_SIZE) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
if (calculate_block_crc(block) != block->header.crc)
return HAL_ERROR_KEYSTORE_BAD_CRC;
return HAL_OK;
}
/*
* Read a block using the cache. Marking the block as used is left
* for the caller, so we can avoid blowing out the cache when we
* perform a ks_match() operation.
*/
static hal_error_t block_read_cached(const unsigned blockno, flash_block_t **block)
{
if (block == NULL)
return HAL_ERROR_IMPOSSIBLE;
if ((*block = cache_find_block(blockno)) != NULL)
return HAL_OK;
if ((*block = cache_pick_lru()) == NULL)
return HAL_ERROR_IMPOSSIBLE;
return block_read(blockno, *block);
}
/*
* Convert a live block into a tombstone. Caller is responsible for
* making sure that the block being converted is valid; since we don't
* need to update the CRC for this, we just modify the first page.
*/
static hal_error_t block_deprecate(const unsigned blockno)
{
if (blockno >= NUM_FLASH_BLOCKS)
return HAL_ERROR_IMPOSSIBLE;
uint8_t page[KEYSTORE_PAGE_SIZE];
flash_block_header_t *header = (void *) page;
uint32_t offset = block_offset(blockno);
/* Sigh, magic numeric return codes */
if (keystore_read_data(offset, page, sizeof(page)) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
header->block_status = BLOCK_STATUS_TOMBSTONE;
/* Sigh, magic numeric return codes */
if (keystore_write_data(offset, page, sizeof(page)) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
return HAL_OK;
}
/*
* Zero (not erase) a flash block. Just need to zero the first page.
*/
static hal_error_t block_zero(const unsigned blockno)
{
if (blockno >= NUM_FLASH_BLOCKS)
return HAL_ERROR_IMPOSSIBLE;
uint8_t page[KEYSTORE_PAGE_SIZE] = {0};
/* Sigh, magic numeric return codes */
if (keystore_write_data(block_offset(blockno), page, sizeof(page)) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
return HAL_OK;
}
/*
* Erase a flash block. Also see block_erase_maybe(), below.
*/
static hal_error_t block_erase(const unsigned blockno)
{
if (blockno >= NUM_FLASH_BLOCKS)
return HAL_ERROR_IMPOSSIBLE;
/* Sigh, magic numeric return codes */
if (keystore_erase_subsectors(blockno, blockno) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
return HAL_OK;
}
/*
* Erase a flash block if it hasn't already been erased.
* May not be necessary, trying to avoid unnecessary wear.
*
* Unclear whether there's any sane reason why this needs to be
* constant time, given how slow erasure is. But side channel attacks
* can be tricky things, and it's theoretically possible that we could
* leak information about, eg, key length, so we do constant time.
*/
static hal_error_t block_erase_maybe(const unsigned blockno)
{
if (blockno >= NUM_FLASH_BLOCKS)
return HAL_ERROR_IMPOSSIBLE;
uint8_t mask = 0xFF;
for (uint32_t a = block_offset(blockno); a < block_offset(blockno + 1); a += KEYSTORE_PAGE_SIZE) {
uint8_t page[KEYSTORE_PAGE_SIZE];
if (keystore_read_data(a, page, sizeof(page)) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
for (int i = 0; i < KEYSTORE_PAGE_SIZE; i++)
mask &= page[i];
}
return mask == 0xFF ? HAL_OK : block_erase(blockno);
}
/*
* Write a flash block, calculating CRC when appropriate.
*/
static hal_error_t block_write(const unsigned blockno, flash_block_t *block)
{
if (block == NULL || blockno >= NUM_FLASH_BLOCKS || sizeof(*block) != KEYSTORE_SUBSECTOR_SIZE)
return HAL_ERROR_IMPOSSIBLE;
hal_error_t err = block_erase_maybe(blockno);
if (err != HAL_OK)
return err;
switch (block_get_type(block)) {
case BLOCK_TYPE_KEY:
case BLOCK_TYPE_PIN:
case BLOCK_TYPE_ATTR:
block->header.crc = calculate_block_crc(block);
break;
default:
break;
}
/* Sigh, magic numeric return codes */
if (keystore_write_data(block_offset(blockno), block->bytes, sizeof(*block)) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
return HAL_OK;
}
/*
* Update one flash block, including zombie jamboree.
*/
static hal_error_t block_update(const unsigned b1, flash_block_t *block,
const hal_uuid_t * const uuid, const unsigned chunk, int *hint)
{
if (block == NULL)
return HAL_ERROR_IMPOSSIBLE;
if (db.ksi.used == db.ksi.size)
return HAL_ERROR_NO_KEY_INDEX_SLOTS;
cache_release(block);
hal_error_t err;
unsigned b2;
if ((err = block_deprecate(b1)) != HAL_OK ||
(err = hal_ks_index_replace(&db.ksi, uuid, chunk, &b2, hint)) != HAL_OK ||
(err = block_write(b2, block)) != HAL_OK ||
(err = block_zero(b1)) != HAL_OK)
return err;
cache_mark_used(block, b2);
return block_erase_maybe(db.ksi.index[db.ksi.used]);
}
/*
* Forward reference.
*/
static hal_error_t fetch_pin_block(unsigned *b, flash_block_t **block);
/*
* Initialize keystore. This includes various tricky bits, some of
* which attempt to preserve the free list ordering across reboots, to
* improve our simplistic attempt at wear leveling, others attempt to
* recover from unclean shutdown.
*/
static inline void *gnaw(uint8_t **mem, size_t *len, const size_t size)
{
if (mem == NULL || *mem == NULL || len == NULL || size > *len)
return NULL;
void *ret = *mem;
*mem += size;
*len -= size;
return ret;
}
static hal_error_t ks_init(const hal_ks_driver_t * const driver)
{
/*
* Initialize the in-memory database.
*/
size_t len = (sizeof(*db.ksi.index) * NUM_FLASH_BLOCKS +
sizeof(*db.ksi.names) * NUM_FLASH_BLOCKS +
sizeof(*db.cache) * KS_FLASH_CACHE_SIZE);
uint8_t *mem = hal_allocate_static_memory(len);
if (mem == NULL)
return HAL_ERROR_ALLOCATION_FAILURE;
memset(&db, 0, sizeof(db));
memset(mem, 0, len);
db.ksi.index = gnaw(&mem, &len, sizeof(*db.ksi.index) * NUM_FLASH_BLOCKS);
db.ksi.names = gnaw(&mem, &len, sizeof(*db.ksi.names) * NUM_FLASH_BLOCKS);
db.cache = gnaw(&mem, &len, sizeof(*db.cache) * KS_FLASH_CACHE_SIZE);
db.ksi.size = NUM_FLASH_BLOCKS;
db.ksi.used = 0;
if (db.ksi.index == NULL || db.ksi.names == NULL || db.cache == NULL)
return HAL_ERROR_IMPOSSIBLE;
for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++)
db.cache[i].blockno = ~0;
/*
* Scan existing content of flash to figure out what we've got.
* This gets a bit involved due to the need to recover from things
* like power failures at inconvenient times.
*/
flash_block_type_t block_types[NUM_FLASH_BLOCKS];
flash_block_status_t block_status[NUM_FLASH_BLOCKS];
flash_block_t *block = cache_pick_lru();
int first_erased = -1;
hal_error_t err;
uint16_t n = 0;
if (block == NULL)
return HAL_ERROR_IMPOSSIBLE;
for (int i = 0; i < NUM_FLASH_BLOCKS; i++) {
/*
* Read one block. If the CRC is bad or the block type is
* unknown, it's old data we don't understand, something we were
* writing when we crashed, or bad flash; in any of these cases,
* we want the block to ends up near the end of the free list.
*/
err = block_read(i, block);
if (err == HAL_ERROR_KEYSTORE_BAD_CRC || err == HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE)
block_types[i] = BLOCK_TYPE_UNKNOWN;
else if (err == HAL_OK)
block_types[i] = block_get_type(block);
else
return err;
switch (block_types[i]) {
case BLOCK_TYPE_KEY:
case BLOCK_TYPE_PIN:
case BLOCK_TYPE_ATTR:
block_status[i] = block_get_status(block);
break;
default:
block_status[i] = BLOCK_STATUS_UNKNOWN;
}
/*
* First erased block we see is head of the free list.
*/
if (block_types[i] == BLOCK_TYPE_ERASED && first_erased < 0)
first_erased = i;
/*
* If it's a valid data block, include it in the index. We remove
* tombstones (if any) below, for now it's easiest to include them
* in the index, so we can look them up by name if we must.
*/
const hal_uuid_t *uuid = NULL;
switch (block_types[i]) {
case BLOCK_TYPE_KEY: uuid = &block->key.name; break;
case BLOCK_TYPE_ATTR: uuid = &block->attr.name; break;
case BLOCK_TYPE_PIN: uuid = &pin_uuid; break;
default: /* Keep GCC happy */ break;
}
if (uuid != NULL) {
db.ksi.names[i].name = *uuid;
db.ksi.names[i].chunk = block->header.this_chunk;
db.ksi.index[n++] = i;
}
}
db.ksi.used = n;
assert(db.ksi.used <= db.ksi.size);
/*
* At this point we've built the (unsorted) index from all the valid
* blocks. Now we need to insert free and unrecognized blocks into
* the free list in our preferred order. It's possible that there's
* a better way to do this than linear scan, but this is just
* integer comparisons in a fairly small data set, so it's probably
* not worth trying to optimize.
*/
if (n < db.ksi.size)
for (int i = 0; i < NUM_FLASH_BLOCKS; i++)
if (block_types[i] == BLOCK_TYPE_ERASED)
db.ksi.index[n++] = i;
if (n < db.ksi.size)
for (int i = first_erased; i < NUM_FLASH_BLOCKS; i++)
if (block_types[i] == BLOCK_TYPE_ZEROED)
db.ksi.index[n++] = i;
if (n < db.ksi.size)
for (int i = 0; i < first_erased; i++)
if (block_types[i] == BLOCK_TYPE_ZEROED)
db.ksi.index[n++] = i;
if (n < db.ksi.size)
for (int i = 0; i < NUM_FLASH_BLOCKS; i++)
if (block_types[i] == BLOCK_TYPE_UNKNOWN)
db.ksi.index[n++] = i;
assert(n == db.ksi.size);
/*
* Initialize the index.
*/
if ((err = hal_ks_index_setup(&db.ksi)) != HAL_OK)
return err;
/*
* We might want to call hal_ks_index_fsck() here, if we can figure
* out some safe set of recovery actions we can take.
*/
/*
* Deal with tombstones. These are blocks left behind when
* something bad (like a power failure) happened while we updating.
* The sequence of operations while updating is designed so that,
* barring a bug or a hardware failure, we should never lose data.
*
* For any tombstone we find, we start by looking for all the blocks
* with a matching UUID, then see what valid sequences we can
* construct from what we found.
*
* If we can construct a valid sequence of live blocks, the complete
* update was written out, and we just need to zero the tombstones.
*
* Otherwise, if we can construct a complete sequence of tombstone
* blocks, the update failed before it was completely written, so we
* have to zero the incomplete sequence of live blocks then restore
* from the tombstones.
*
* Otherwise, if the live and tombstone blocks taken together form a
* valid sequence, the update failed while deprecating the old live
* blocks, and the update itself was not written, so we need to
* restore the tombstones and leave the live blocks alone.
*
* If none of the above applies, we don't understand what happened,
* which is a symptom of either a bug or a hardware failure more
* serious than simple loss of power or reboot at an inconvenient
* time, so we error out to avoid accidental loss of data.
*/
for (int i = 0; i < NUM_FLASH_BLOCKS; i++) {
if (block_status[i] != BLOCK_STATUS_TOMBSTONE)
continue;
hal_uuid_t name = db.ksi.names[i].name;
unsigned n_blocks;
int where = -1;
if ((err = hal_ks_index_find_range(&db.ksi, &name, 0, &n_blocks, NULL, &where, 0)) != HAL_OK)
return err;
while (where > 0 && !hal_uuid_cmp(&name, &db.ksi.names[db.ksi.index[where - 1]].name)) {
where--;
n_blocks++;
}
int live_ok = 1, tomb_ok = 1, join_ok = 1;
unsigned n_live = 0, n_tomb = 0;
unsigned i_live = 0, i_tomb = 0;
for (int j = 0; j < n_blocks; j++) {
unsigned b = db.ksi.index[where + j];
switch (block_status[b]) {
case BLOCK_STATUS_LIVE: n_live++; break;
case BLOCK_STATUS_TOMBSTONE: n_tomb++; break;
default: return HAL_ERROR_IMPOSSIBLE;
}
}
uint16_t live_blocks[n_live], tomb_blocks[n_tomb];
for (int j = 0; j < n_blocks; j++) {
unsigned b = db.ksi.index[where + j];
if ((err = block_read(b, block)) != HAL_OK)
return err;
join_ok &= block->header.this_chunk == j && block->header.total_chunks == n_blocks;
switch (block_status[b]) {
case BLOCK_STATUS_LIVE:
live_blocks[i_live] = b;
live_ok &= block->header.this_chunk == i_live++ && block->header.total_chunks == n_live;
break;
case BLOCK_STATUS_TOMBSTONE:
tomb_blocks[i_tomb] = b;
tomb_ok &= block->header.this_chunk == i_tomb++ && block->header.total_chunks == n_tomb;
break;
default:
return HAL_ERROR_IMPOSSIBLE;
}
}
if (!live_ok && !tomb_ok && !join_ok)
return HAL_ERROR_KEYSTORE_LOST_DATA;
if (live_ok) {
for (int j = 0; j < n_tomb; j++) {
const unsigned b = tomb_blocks[j];
if ((err = block_zero(b)) != HAL_OK)
return err;
block_types[b] = BLOCK_TYPE_ZEROED;
block_status[b] = BLOCK_STATUS_UNKNOWN;
}
}
else if (tomb_ok) {
for (int j = 0; j < n_live; j++) {
const unsigned b = live_blocks[j];
if ((err = block_zero(b)) != HAL_OK)
return err;
block_types[b] = BLOCK_TYPE_ZEROED;
block_status[b] = BLOCK_STATUS_UNKNOWN;
}
}
if (live_ok) {
memcpy(&db.ksi.index[where], live_blocks, n_live * sizeof(*db.ksi.index));
memmove(&db.ksi.index[where + n_live], &db.ksi.index[where + n_blocks],
(db.ksi.size - where - n_blocks) * sizeof(*db.ksi.index));
memcpy(&db.ksi.index[db.ksi.size - n_tomb], tomb_blocks, n_tomb * sizeof(*db.ksi.index));
db.ksi.used -= n_tomb;
n_blocks = n_live;
}
else if (tomb_ok) {
memcpy(&db.ksi.index[where], tomb_blocks, n_tomb * sizeof(*db.ksi.index));
memmove(&db.ksi.index[where + n_tomb], &db.ksi.index[where + n_blocks],
(db.ksi.size - where - n_blocks) * sizeof(*db.ksi.index));
memcpy(&db.ksi.index[db.ksi.size - n_live], live_blocks, n_live * sizeof(*db.ksi.index));
db.ksi.used -= n_live;
n_blocks = n_tomb;
}
for (int j = 0; j < n_blocks; j++) {
int hint = where + j;
unsigned b1 = db.ksi.index[hint], b2;
if (block_status[b1] != BLOCK_STATUS_TOMBSTONE)
continue;
if ((err = block_read(b1, block)) != HAL_OK)
return err;
block->header.block_status = BLOCK_STATUS_LIVE;
if ((err = hal_ks_index_replace(&db.ksi, &name, j, &b2, &hint)) != HAL_OK ||
(err = block_write(b2, block)) != HAL_OK)
return err;
block_types[b1] = BLOCK_TYPE_ZEROED;
block_status[b1] = BLOCK_STATUS_UNKNOWN;
block_status[b2] = BLOCK_STATUS_LIVE;
}
}
err = fetch_pin_block(NULL, &block);
if (err == HAL_OK) {
db.wheel_pin = block->pin.wheel_pin;
db.so_pin = block->pin.so_pin;
db.user_pin = block->pin.user_pin;
}
else if (err != HAL_ERROR_KEY_NOT_FOUND)
return err;
else {
/*
* We found no PIN block, so create one, with the user and so PINs
* cleared and the wheel PIN set to the last-gasp value. The
* last-gasp WHEEL PIN is a terrible answer, but we need some kind
* of bootstrapping mechanism when all else fails. If you have a
* better suggestion, we'd love to hear it.
*/
unsigned b;
memset(block, 0xFF, sizeof(*block));
block->header.block_type = BLOCK_TYPE_PIN;
block->header.block_status = BLOCK_STATUS_LIVE;
block->header.total_chunks = 1;
block->header.this_chunk = 0;
block->pin.wheel_pin = db.wheel_pin = hal_last_gasp_pin;
block->pin.so_pin = db.so_pin;
block->pin.user_pin = db.user_pin;
if ((err = hal_ks_index_add(&db.ksi, &pin_uuid, 0, &b, NULL)) != HAL_OK)
return err;
cache_mark_used(block, b);
err = block_write(b, block);
cache_release(block);
if (err != HAL_OK)
return err;
}
/*
* Erase first block on free list if it's not already erased.
*/
if (db.ksi.used < db.ksi.size &&
(err = block_erase_maybe(db.ksi.index[db.ksi.used])) != HAL_OK)
return err;
/*
* And we're finally done.
*/
db.ks.driver = driver;
return HAL_OK;
}
static hal_error_t ks_shutdown(const hal_ks_driver_t * const driver)
{
if (db.ks.driver != driver)
return HAL_ERROR_KEYSTORE_ACCESS;
return HAL_OK;
}
static hal_error_t ks_open(const hal_ks_driver_t * const driver,
hal_ks_t **ks)
{
if (driver != hal_ks_token_driver || ks == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
*ks = &db.ks;
return HAL_OK;
}
static hal_error_t ks_close(hal_ks_t *ks)
{
if (ks != NULL && ks != &db.ks)
return HAL_ERROR_BAD_ARGUMENTS;
return HAL_OK;
}
static inline int acceptable_key_type(const hal_key_type_t type)
{
switch (type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
case HAL_KEY_TYPE_EC_PRIVATE:
case HAL_KEY_TYPE_RSA_PUBLIC:
case HAL_KEY_TYPE_EC_PUBLIC:
return 1;
default:
return 0;
}
}
static hal_error_t ks_store(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint8_t * const der, const size_t der_len)
{
if (ks != &db.ks || slot == NULL || der == NULL || der_len == 0 || !acceptable_key_type(slot->type))
return HAL_ERROR_BAD_ARGUMENTS;
flash_block_t *block = cache_pick_lru();
flash_key_block_t *k = &block->key;
uint8_t kek[KEK_LENGTH];
size_t kek_len;
hal_error_t err;
unsigned b;
if (block == NULL)
return HAL_ERROR_IMPOSSIBLE;
if ((err = hal_ks_index_add(&db.ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK)
return err;
cache_mark_used(block, b);
memset(block, 0xFF, sizeof(*block));
block->header.block_type = BLOCK_TYPE_KEY;
block->header.block_status = BLOCK_STATUS_LIVE;
block->header.total_chunks = 1;
block->header.this_chunk = 0;
k->name = slot->name;
k->type = slot->type;
k->curve = slot->curve;
k->flags = slot->flags;
k->der_len = SIZEOF_FLASH_KEY_BLOCK_DER;
k->attributes_len = 0;
if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
err = hal_aes_keywrap(NULL, kek, kek_len, der, der_len, k->der, &k->der_len);
memset(kek, 0, sizeof(kek));
if (err == HAL_OK &&
(err = block_write(b, block)) == HAL_OK)
return HAL_OK;
memset(block, 0, sizeof(*block));
cache_release(block);
(void) hal_ks_index_delete(&db.ksi, &slot->name, 0, NULL, &slot->hint);
return err;
}
static hal_error_t ks_fetch(hal_ks_t *ks,
hal_pkey_slot_t *slot,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (ks != &db.ks || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
flash_block_t *block;
hal_error_t err;
unsigned b;
if ((err = hal_ks_index_find(&db.ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK ||
(err = block_read_cached(b, &block)) != HAL_OK)
return err;
if (block_get_type(block) != BLOCK_TYPE_KEY)
return HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */
cache_mark_used(block, b);
flash_key_block_t *k = &block->key;
slot->type = k->type;
slot->curve = k->curve;
slot->flags = k->flags;
if (der == NULL && der_len != NULL)
*der_len = k->der_len;
if (der != NULL) {
uint8_t kek[KEK_LENGTH];
size_t kek_len, der_len_;
hal_error_t err;
if (der_len == NULL)
der_len = &der_len_;
*der_len = der_max;
if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
err = hal_aes_keyunwrap(NULL, kek, kek_len, k->der, k->der_len, der, der_len);
memset(kek, 0, sizeof(kek));
if (err != HAL_OK)
return err;
}
return HAL_OK;
}
static hal_error_t ks_delete(hal_ks_t *ks,
hal_pkey_slot_t *slot)
{
if (ks != &db.ks || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_error_t err;
unsigned n;
if ((err = hal_ks_index_delete_range(&db.ksi, &slot->name, 0, &n, NULL, &slot->hint)) != HAL_OK)
return err;
unsigned b[n];
if ((err = hal_ks_index_delete_range(&db.ksi, &slot->name, n, NULL, b, &slot->hint)) != HAL_OK)
return err;
for (int i = 0; i < n; i++)
cache_release(cache_find_block(b[i]));
for (int i = 0; i < n; i++)
if ((err = block_zero(b[i])) != HAL_OK)
return err;
return block_erase_maybe(db.ksi.index[db.ksi.used]);
}
static inline hal_error_t locate_attributes(flash_block_t *block, const unsigned chunk,
uint8_t **bytes, size_t *bytes_len,
unsigned **attrs_len)
{
if (block == NULL || bytes == NULL || bytes_len == NULL || attrs_len == NULL)
return HAL_ERROR_IMPOSSIBLE;
if (chunk == 0) {
if (block_get_type(block) != BLOCK_TYPE_KEY)
return HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */
*attrs_len = &block->key.attributes_len;
*bytes = block->key.der + block->key.der_len;
*bytes_len = SIZEOF_FLASH_KEY_BLOCK_DER - block->key.der_len;
}
else {
if (block_get_type(block) != BLOCK_TYPE_ATTR)
return HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */
*attrs_len = &block->attr.attributes_len;
*bytes = block->attr.attributes;
*bytes_len = SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES;
}
return HAL_OK;
}
static hal_error_t ks_match(hal_ks_t *ks,
const hal_client_handle_t client,
const hal_session_handle_t session,
const hal_key_type_t type,
const hal_curve_name_t curve,
const hal_key_flags_t flags,
const hal_rpc_pkey_attribute_t *attributes,
const unsigned attributes_len,
hal_uuid_t *result,
unsigned *result_len,
const unsigned result_max,
const hal_uuid_t * const previous_uuid)
{
if (ks == NULL || (attributes == NULL && attributes_len > 0) ||
result == NULL || result_len == NULL || previous_uuid == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
uint8_t need_attr[attributes_len > 0 ? attributes_len : 1];
flash_block_t *block;
int possible = 0;
hal_error_t err;
int i = -1;
*result_len = 0;
err = hal_ks_index_find(&db.ksi, previous_uuid, 0, NULL, &i);
if (err == HAL_ERROR_KEY_NOT_FOUND)
i--;
else if (err != HAL_OK)
return err;
while (*result_len < result_max && ++i < db.ksi.used) {
unsigned b = db.ksi.index[i];
if (db.ksi.names[b].chunk == 0)
possible = 1;
if (!possible)
continue;
if ((err = block_read_cached(b, &block)) != HAL_OK)
return err;
if (db.ksi.names[b].chunk == 0) {
memset(need_attr, 1, sizeof(need_attr));
possible = ((type == HAL_KEY_TYPE_NONE || type == block->key.type) &&
(curve == HAL_CURVE_NONE || curve == block->key.curve));
}
if (!possible)
continue;
if (attributes_len > 0) {
uint8_t *bytes = NULL;
size_t bytes_len = 0;
unsigned *attrs_len;
if ((err = locate_attributes(block, db.ksi.names[b].chunk,
&bytes, &bytes_len, &attrs_len)) != HAL_OK)
return err;
if (*attrs_len > 0) {
hal_rpc_pkey_attribute_t attrs[*attrs_len];
if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, NULL)) != HAL_OK)
return err;
for (int j = 0; possible && j < attributes_len; j++) {
if (!need_attr[j])
continue;
for (hal_rpc_pkey_attribute_t *a = attrs; a < attrs + *attrs_len; a++) {
if (a->type != attributes[j].type)
continue;
need_attr[j] = 0;
possible = (a->length == attributes[j].length &&
!memcmp(a->value, attributes[j].value, a->length));
break;
}
}
}
}
if (!possible)
continue;
if (attributes_len > 0 && memchr(need_attr, 1, sizeof(need_attr)) != NULL)
continue;
result[*result_len] = db.ksi.names[b].name;
++*result_len;
possible = 0;
}
return HAL_OK;
}
static hal_error_t ks_set_attributes(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const hal_rpc_pkey_attribute_t *attributes,
const unsigned attributes_len)
{
#warning This function is much too long
// Probably needs to be broken up into multiple sub-functions, or at least
// into discrete blocks to scope most of the variables, but let's finish
// writing the icky version before polishing the chrome.
if (ks != &db.ks || slot == NULL || attributes == NULL || attributes_len == 0)
return HAL_ERROR_BAD_ARGUMENTS;
/*
* Try to add new attribute as a single-block update.
*/
unsigned updated_attributes_len = attributes_len;
flash_block_t *block;
unsigned chunk = 0;
hal_error_t err;
unsigned b;
do {
int hint = slot->hint + chunk;
if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK ||
(err = block_read_cached(b, &block)) != HAL_OK)
return err;
if (block->header.this_chunk != chunk)
return HAL_ERROR_IMPOSSIBLE;
cache_mark_used(block, b);
if (chunk == 0)
slot->hint = hint;
uint8_t *bytes = NULL;
size_t bytes_len = 0;
unsigned *attrs_len;
if ((err = locate_attributes(block, chunk, &bytes, &bytes_len, &attrs_len)) != HAL_OK)
return err;
updated_attributes_len += *attrs_len;
hal_rpc_pkey_attribute_t attrs[*attrs_len + attributes_len];
size_t total;
if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, &total)) != HAL_OK)
return err;
for (int i = 0; err == HAL_OK && i < attributes_len; i++) {
if (attributes[i].length == 0)
err = hal_ks_attribute_delete(bytes, bytes_len, attrs, attrs_len, &total,
attributes[i].type);
else
err = hal_ks_attribute_insert(bytes, bytes_len, attrs, attrs_len, &total,
attributes[i].type,
attributes[i].value,
attributes[i].length);
if (err != HAL_OK)
cache_release(block);
}
if (err == HAL_ERROR_RESULT_TOO_LONG)
continue;
if (err != HAL_OK)
return err;
return block_update(b, block, &slot->name, chunk, &hint);
} while (++chunk < block->header.total_chunks);
/*
* If we get here, we have to add a new block, which requires
* rewriting all the others to bump the total_blocks count. We need
* to keep track of all the old chunks so we can zero them at the
* end, and because we can't zero them until we've written out the
* new chunks, we need enough free blocks for the entire new object.
*
* Calculating all of this is extremely tedious, but flash writes
* are so much more expensive than anything else we do here that
* it's almost certainly worth it.
*
* We don't need the attribute values to compute the sizes, just the
* attribute sizes, so we scan all the existing blocks, build up a
* structure with the current attribute types and sizes, modify that
* according to our arguments, and compute the needed size. Once we
* have that, we can start rewriting existing blocks. We put all
* the new stuff at the end, which simplifies this slightly.
*
* In theory, this process never requires us to have more than two
* blocks in memory at the same time (source and destination when
* copying across chunk boundaries), but having enough cache buffers
* to keep the whole set in memory will almost certainly make this
* run faster.
*/
hal_rpc_pkey_attribute_t updated_attributes[updated_attributes_len];
const unsigned total_chunks_old = block->header.total_chunks;
size_t bytes_available = 0;
updated_attributes_len = 0;
for (chunk = 0; chunk < total_chunks_old; chunk++) {
int hint = slot->hint + chunk;
if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK ||
(err = block_read_cached(b, &block)) != HAL_OK)
return err;
if (block->header.this_chunk != chunk)
return HAL_ERROR_IMPOSSIBLE;
cache_mark_used(block, b);
uint8_t *bytes = NULL;
size_t bytes_len = 0;
unsigned *attrs_len;
if ((err = locate_attributes(block, chunk, &bytes, &bytes_len, &attrs_len)) != HAL_OK)
return err;
hal_rpc_pkey_attribute_t attrs[*attrs_len];
size_t total;
if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, &total)) != HAL_OK)
return err;
if (chunk == 0)
bytes_available = bytes_len;
for (int i = 0; i < *attrs_len; i++) {
if (updated_attributes_len >= sizeof(updated_attributes)/sizeof(*updated_attributes))
return HAL_ERROR_IMPOSSIBLE;
updated_attributes[updated_attributes_len].type = attrs[i].type;
updated_attributes[updated_attributes_len].length = attrs[i].length;
updated_attributes[updated_attributes_len].value = NULL;
updated_attributes_len++;
}
}
for (int i = 0; i < attributes_len; i++) {
for (int j = 0; j < updated_attributes_len; j++)
if (updated_attributes[j].type == attributes[i].type)
updated_attributes[j].length = 0;
if (updated_attributes_len >= sizeof(updated_attributes)/sizeof(*updated_attributes))
return HAL_ERROR_IMPOSSIBLE;
updated_attributes[updated_attributes_len].type = attributes[i].type;
updated_attributes[updated_attributes_len].length = attributes[i].length;
updated_attributes[updated_attributes_len].value = attributes[i].value;
updated_attributes_len++;
}
chunk = 0;
for (int i = 0; i < updated_attributes_len; i++) {
if (updated_attributes[i].length == 0) {
memmove(&updated_attributes[i], &updated_attributes[i + 1], updated_attributes_len - i - 1);
updated_attributes_len--;
i--;
continue;
}
const size_t needed = hal_ks_attribute_header_size + updated_attributes[i].length;
if (needed > bytes_available) {
bytes_available = SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES;
chunk++;
}
if (needed > bytes_available)
return HAL_ERROR_RESULT_TOO_LONG;
bytes_available -= needed;
}
const unsigned total_chunks_new = chunk + 1;
if (db.ksi.used + total_chunks_new > db.ksi.size)
return HAL_ERROR_NO_KEY_INDEX_SLOTS;
/*
* Phase 1: Deprecate all the old chunks, remember where they were.
*/
unsigned old_blocks[total_chunks_old];
for (chunk = 0; chunk < total_chunks_old; chunk++) {
int hint = slot->hint + chunk;
if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK ||
(err = block_deprecate(b)) != HAL_OK)
return err;
old_blocks[chunk] = b;
}
/*
* Phase 2: Write new chunks, copying attributes from old chunks and attributes[]
* as needed. This is tedious.
*/
{
hal_rpc_pkey_attribute_t old_attrs[updated_attributes_len], new_attrs[updated_attributes_len];
unsigned *old_attrs_len = NULL, *new_attrs_len = NULL;
flash_block_t *old_block = NULL, *new_block = NULL;
uint8_t *old_bytes = NULL, *new_bytes = NULL;
size_t old_bytes_len = 0, new_bytes_len = 0;
unsigned old_chunk = 0, new_chunk = 0;
size_t old_total = 0, new_total = 0;
int updated_attributes_i = 0, old_attrs_i = 0;
uint32_t new_attr_type;
size_t new_attr_length;
const uint8_t *new_attr_value;
while (updated_attributes_i < updated_attributes_len) {
if (old_chunk >= total_chunks_old || new_chunk >= total_chunks_new)
return HAL_ERROR_IMPOSSIBLE;
if (updated_attributes[updated_attributes_i].value != NULL) {
new_attr_type = updated_attributes[updated_attributes_i].type;
new_attr_length = updated_attributes[updated_attributes_i].length;
new_attr_value = updated_attributes[updated_attributes_i].value;
}
else {
if (old_block == NULL) {
if ((err = block_read_cached(old_blocks[old_chunk], &old_block)) != HAL_OK)
return err;
if (old_block->header.this_chunk != old_chunk)
return HAL_ERROR_IMPOSSIBLE;
if ((err = locate_attributes(old_block, old_chunk,
&old_bytes, &old_bytes_len, &old_attrs_len)) != HAL_OK ||
(err = hal_ks_attribute_scan(old_bytes, old_bytes_len,
old_attrs, *old_attrs_len, &old_total)) != HAL_OK)
return err;
old_attrs_i = 0;
}
while (old_attrs_i < *old_attrs_len &&
old_attrs[old_attrs_i].type != updated_attributes[updated_attributes_i].type)
old_attrs_i++;
if (old_attrs_i >= *old_attrs_len) {
old_chunk++;
old_block = NULL;
continue;
}
new_attr_type = old_attrs[old_attrs_i].type;
new_attr_length = old_attrs[old_attrs_i].length;
new_attr_value = old_attrs[old_attrs_i].value;
}
if (new_block == NULL) {
new_block = cache_pick_lru();
memset(new_block, 0xFF, sizeof(*new_block));
if (new_chunk == 0) {
flash_block_t *tmp_block;
if ((err = block_read_cached(old_blocks[0], &tmp_block)) != HAL_OK)
return err;
if (tmp_block->header.this_chunk != 0)
return HAL_ERROR_IMPOSSIBLE;
new_block->header.block_type = BLOCK_TYPE_KEY;
new_block->key.name = slot->name;
new_block->key.type = tmp_block->key.type;
new_block->key.curve = tmp_block->key.curve;
new_block->key.flags = tmp_block->key.flags;
new_block->key.der_len = tmp_block->key.der_len;
new_block->key.attributes_len = 0;
memcpy(new_block->key.der, tmp_block->key.der, tmp_block->key.der_len);
}
else {
new_block->header.block_type = BLOCK_TYPE_ATTR;
new_block->attr.name = slot->name;
new_block->attr.attributes_len = 0;
}
new_block->header.block_status = BLOCK_STATUS_LIVE;
new_block->header.total_chunks = total_chunks_new;
new_block->header.this_chunk = new_chunk;
if ((err = locate_attributes(new_block, new_chunk,
&new_bytes, &new_bytes_len, &new_attrs_len)) != HAL_OK)
return err;
new_total = 0;
}
err = hal_ks_attribute_insert(new_bytes, new_bytes_len, new_attrs, new_attrs_len, &new_total,
new_attr_type, new_attr_value, new_attr_length);
switch (err) {
case HAL_OK:
if (++updated_attributes_i < updated_attributes_len)
continue;
break;
case HAL_ERROR_RESULT_TOO_LONG:
if (new_chunk > 0 && new_attrs_len == 0)
return err;
break;
default:
return err;
}
int hint = slot->hint + new_chunk;
if (new_chunk < total_chunks_old)
err = hal_ks_index_replace(&db.ksi, &slot->name, new_chunk, &b, &hint);
else
err = hal_ks_index_add( &db.ksi, &slot->name, new_chunk, &b, &hint);
if (err != HAL_OK || (err = block_write(b, new_block)) != HAL_OK)
return err;
cache_mark_used(new_block, b);
new_block = NULL;
new_chunk++;
}
}
/*
* Phase 3: Zero the old chunks we deprecated in phase 1.
*/
for (chunk = 0; chunk < total_chunks_old; chunk++)
if ((err = block_zero(old_blocks[chunk])) != HAL_OK)
return err;
return HAL_OK;
}
static hal_error_t ks_get_attributes(hal_ks_t *ks,
hal_pkey_slot_t *slot,
hal_rpc_pkey_attribute_t *attributes,
const unsigned attributes_len,
uint8_t *attributes_buffer,
const size_t attributes_buffer_len)
{
if (ks != &db.ks || slot == NULL || attributes == NULL || attributes_len == 0 ||
attributes_buffer == NULL || attributes_buffer_len == 0)
return HAL_ERROR_BAD_ARGUMENTS;
for (int i = 0; i < attributes_len; i++) {
attributes[i].length = 0;
attributes[i].value = NULL;
}
uint8_t *abuf = attributes_buffer;
flash_block_t *block = NULL;
unsigned chunk = 0;
unsigned found = 0;
hal_error_t err;
unsigned b;
do {
int hint = slot->hint + chunk;
if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK ||
(err = block_read_cached(b, &block)) != HAL_OK)
return err;
if (block->header.this_chunk != chunk)
return HAL_ERROR_IMPOSSIBLE;
if (chunk == 0)
slot->hint = hint;
cache_mark_used(block, b);
uint8_t *bytes = NULL;
size_t bytes_len = 0;
unsigned *attrs_len;
if ((err = locate_attributes(block, chunk, &bytes, &bytes_len, &attrs_len)) != HAL_OK)
return err;
if (*attrs_len == 0)
continue;
hal_rpc_pkey_attribute_t attrs[*attrs_len];
if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, NULL)) != HAL_OK)
return err;
for (int i = 0; i < attributes_len; i++) {
if (attributes[i].value != NULL)
continue;
int j = 0;
while (j < *attrs_len && attrs[j].type != attributes[i].type)
j++;
if (j >= *attrs_len)
continue;
if (attrs[j].length > attributes_buffer + attributes_buffer_len - abuf)
return HAL_ERROR_RESULT_TOO_LONG;
memcpy(abuf, attrs[j].value, attrs[j].length);
attributes[i].value = abuf;
attributes[i].length = attrs[j].length;
abuf += attrs[j].length;
found++;
}
} while (found < attributes_len && ++chunk < block->header.total_chunks);
if (found < attributes_len)
return HAL_ERROR_ATTRIBUTE_NOT_FOUND;
return HAL_OK;
}
const hal_ks_driver_t hal_ks_token_driver[1] = {{
.init = ks_init,
.shutdown = ks_shutdown,
.open = ks_open,
.close = ks_close,
.store = ks_store,
.fetch = ks_fetch,
.delete = ks_delete,
.match = ks_match,
.set_attributes = ks_set_attributes,
.get_attributes = ks_get_attributes
}};
/*
* The remaining functions aren't really part of the keystore API per se,
* but they all involve non-key data which we keep in the keystore
* because it's the flash we've got.
*/
/*
* Fetch PIN. This is always cached, so just returned cached value.
*/
hal_error_t hal_get_pin(const hal_user_t user,
const hal_ks_pin_t **pin)
{
if (pin == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
switch (user) {
case HAL_USER_WHEEL: *pin = &db.wheel_pin; break;
case HAL_USER_SO: *pin = &db.so_pin; break;
case HAL_USER_NORMAL: *pin = &db.user_pin; break;
default: return HAL_ERROR_BAD_ARGUMENTS;
}
return HAL_OK;
}
/*
* Fetch PIN block. hint = 0 because we know that the all-zeros UUID
* should always sort to first slot in the index.
*/
static hal_error_t fetch_pin_block(unsigned *b, flash_block_t **block)
{
if (block == NULL)
return HAL_ERROR_IMPOSSIBLE;
hal_error_t err;
int hint = 0;
unsigned b_;
if (b == NULL)
b = &b_;
if ((err = hal_ks_index_find(&db.ksi, &pin_uuid, 0, b, &hint)) != HAL_OK ||
(err = block_read_cached(*b, block)) != HAL_OK)
return err;
cache_mark_used(*block, *b);
if (block_get_type(*block) != BLOCK_TYPE_PIN)
return HAL_ERROR_IMPOSSIBLE;
return HAL_OK;
}
/*
* Update the PIN block. This block should always be present, but we
* have to do the zombie jamboree to make sure we write the new PIN
* block before destroying the old one. hint = 0 because we know that
* the all-zeros UUID should always sort to first slot in the index.
*/
static hal_error_t update_pin_block(const unsigned b,
flash_block_t *block,
const flash_pin_block_t * const new_data)
{
if (block == NULL || new_data == NULL || block_get_type(block) != BLOCK_TYPE_PIN)
return HAL_ERROR_IMPOSSIBLE;
int hint = 0;
block->pin = *new_data;
return block_update(b, block, &pin_uuid, 0, &hint);
}
/*
* Change a PIN.
*/
hal_error_t hal_set_pin(const hal_user_t user,
const hal_ks_pin_t * const pin)
{
if (pin == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
flash_block_t *block;
hal_error_t err;
unsigned b;
if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
return err;
flash_pin_block_t new_data = block->pin;
hal_ks_pin_t *dp, *bp;
switch (user) {
case HAL_USER_WHEEL: bp = &new_data.wheel_pin; dp = &db.wheel_pin; break;
case HAL_USER_SO: bp = &new_data.so_pin; dp = &db.so_pin; break;
case HAL_USER_NORMAL: bp = &new_data.user_pin; dp = &db.user_pin; break;
default: return HAL_ERROR_BAD_ARGUMENTS;
}
const hal_ks_pin_t old_pin = *dp;
*dp = *bp = *pin;
if ((err = update_pin_block(b, block, &new_data)) != HAL_OK)
*dp = old_pin;
return err;
}
#if HAL_MKM_FLASH_BACKUP_KLUDGE
/*
* Horrible insecure kludge in lieu of a battery for the MKM.
*
* API here is a little strange: all calls pass a length parameter,
* but any length other than the compiled in constant just returns an
* immediate error, there's no notion of buffer max length vs buffer
* used length, querying for the size of buffer really needed, or
* anything like that.
*
* We might want to rewrite this some day, if we don't replace it with
* a battery first. For now we just preserve the API as we found it
* while re-implementing it on top of the new keystore.
*/
hal_error_t hal_mkm_flash_read(uint8_t *buf, const size_t len)
{
if (buf != NULL && len != KEK_LENGTH)
return HAL_ERROR_MASTERKEY_BAD_LENGTH;
flash_block_t *block;
hal_error_t err;
unsigned b;
if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
return err;
if (block->pin.kek_set != FLASH_KEK_SET)
return HAL_ERROR_MASTERKEY_NOT_SET;
if (buf != NULL)
memcpy(buf, block->pin.kek, len);
return HAL_OK;
}
hal_error_t hal_mkm_flash_write(const uint8_t * const buf, const size_t len)
{
if (buf == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (len != KEK_LENGTH)
return HAL_ERROR_MASTERKEY_BAD_LENGTH;
flash_block_t *block;
hal_error_t err;
unsigned b;
if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
return err;
flash_pin_block_t new_data = block->pin;
new_data.kek_set = FLASH_KEK_SET;
memcpy(new_data.kek, buf, len);
return update_pin_block(b, block, &new_data);
}
hal_error_t hal_mkm_flash_erase(const size_t len)
{
if (len != KEK_LENGTH)
return HAL_ERROR_MASTERKEY_BAD_LENGTH;
flash_block_t *block;
hal_error_t err;
unsigned b;
if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
return err;
flash_pin_block_t new_data = block->pin;
new_data.kek_set = FLASH_KEK_SET;
memset(new_data.kek, 0, len);
return update_pin_block(b, block, &new_data);
}
#endif /* HAL_MKM_FLASH_BACKUP_KLUDGE */
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/