/*
* ks.c
* ----
* Keystore, generic parts anyway. This is internal within libhal.
*
* Copyright (c) 2015-2018, NORDUnet A/S All rights reserved.
* Copyright: 2020, The Commons Conservancy Cryptech Project
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stddef.h>
#include <string.h>
#include "hal.h"
#include "hal_internal.h"
#include "ks.h"
#ifdef DO_TIMING
#include "stm-dwt.h"
#else
#define DWT_start(x)
#define DWT_stop(x)
#endif
/*
* PIN block gets the all-zeros UUID, which will never be returned by
* the UUID generation code (by definition -- it's not a version 4 UUID).
*/
const hal_uuid_t hal_ks_pin_uuid = {{0}};
/*
* Pick unused or least-recently-used slot in our in-memory cache.
*
* Updating lru values is caller's problem: if caller is using a cache
* slot as a temporary buffer and there's no point in caching the
* result, leave the lru values alone and the right thing will happen.
*/
#define BLOCK_UNUSED (~0U)
hal_ks_block_t *hal_ks_cache_pick_lru(hal_ks_t *ks)
{
uint32_t best_delta = 0;
int best_index = 0;
for (unsigned i = 0; i < ks->cache_size; i++) {
if (ks->cache[i].blockno == BLOCK_UNUSED)
return &ks->cache[i].block;
const unsigned delta = ks->cache_lru - ks->cache[i].lru;
if (delta > best_delta) {
best_delta = delta;
best_index = i;
}
}
ks->cache[best_index].blockno = BLOCK_UNUSED;
return &ks->cache[best_index].block;
}
/*
* Find a block in our in-memory cache; return block or NULL if not present.
*/
hal_ks_block_t *hal_ks_cache_find_block(const hal_ks_t * const ks, const unsigned blockno)
{
for (unsigned i = 0; i < ks->cache_size; i++)
if (ks->cache[i].blockno == blockno)
return &ks->cache[i].block;
return NULL;
}
/*
* Mark a block in our in-memory cache as being in current use.
*/
void hal_ks_cache_mark_used(hal_ks_t *ks, const hal_ks_block_t * const block, const unsigned blockno)
{
for (unsigned i = 0; i < ks->cache_size; i++) {
if (&ks->cache[i].block == block) {
ks->cache[i].blockno = blockno;
ks->cache[i].lru = ++ks->cache_lru;
return;
}
}
}
/*
* Release a block from the in-memory cache.
*/
void hal_ks_cache_release(hal_ks_t *ks, const hal_ks_block_t * const block)
{
if (block != NULL)
hal_ks_cache_mark_used(ks, block, BLOCK_UNUSED);
}
/*
* Generate CRC-32 for a block.
*
* This function needs to understand the structure of the
* hal_ks_block_header_t, so that it can skip over fields that
* shouldn't be included in the CRC.
*/
hal_crc32_t hal_ks_block_calculate_crc(const hal_ks_block_t * const block)
{
hal_crc32_t crc = hal_crc32_init();
if (block != NULL) {
crc = hal_crc32_update(crc, &block->header.block_type,
sizeof(block->header.block_type));
crc = hal_crc32_update(crc, &block->header.legacy_1,
sizeof(block->header.legacy_1));
crc = hal_crc32_update(crc, &block->header.legacy_2,
sizeof(block->header.legacy_2));
crc = hal_crc32_update(crc,
block->bytes + sizeof(hal_ks_block_header_t),
sizeof(*block) - sizeof(hal_ks_block_header_t));
}
return hal_crc32_finalize(crc);
}
/*
* Read a block using the cache. Marking the block as used is left
* for the caller, so we can avoid blowing out the cache when we
* perform a hal_ks_match() operation.
*/
hal_error_t hal_ks_block_read_cached(hal_ks_t *ks, const unsigned blockno, hal_ks_block_t **block)
{
if (block == NULL)
return HAL_ERROR_IMPOSSIBLE;
if ((*block = hal_ks_cache_find_block(ks, blockno)) != NULL)
return HAL_OK;
if ((*block = hal_ks_cache_pick_lru(ks)) == NULL)
return HAL_ERROR_IMPOSSIBLE;
return hal_ks_block_read(ks, blockno, *block);
}
/*
* Update one block, including zombie jamboree.
*/
hal_error_t hal_ks_block_update(hal_ks_t *ks,
const unsigned b1,
hal_ks_block_t *block,
const hal_uuid_t * const uuid,
int *hint)
{
if (block == NULL)
return HAL_ERROR_IMPOSSIBLE;
if (ks->used == ks->size)
return HAL_ERROR_NO_KEY_INDEX_SLOTS;
hal_ks_cache_release(ks, block);
hal_error_t err;
unsigned b2;
if ((err = hal_ks_block_deprecate(ks, b1)) != HAL_OK ||
(err = hal_ks_index_replace(ks, uuid, &b2, hint)) != HAL_OK ||
(err = hal_ks_block_write(ks, b2, block)) != HAL_OK ||
(err = hal_ks_block_copy_owner(ks, b1, b2)) != HAL_OK ||
(err = hal_ks_block_zero(ks, b1)) != HAL_OK)
return err;
hal_ks_cache_mark_used(ks, block, b2);
/*
* Erase the first block in the free list. In case of restart, this
* puts the block back at the head of the free list.
*/
return hal_ks_block_erase_maybe(ks, ks->index[ks->used]);
}
/*
* Initialize keystore. This includes various tricky bits, some of
* which attempt to preserve the free list ordering across reboots, to
* improve our simplistic attempt at wear leveling, others attempt to
* recover from unclean shutdown.
*/
hal_error_t hal_ks_init(hal_ks_t *ks, const int alloc)
{
if (ks == NULL || ks->driver == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (ks->driver->init == NULL)
return HAL_ERROR_NOT_IMPLEMENTED;
hal_ks_lock();
const hal_error_t err = ks->driver->init(ks, alloc);
hal_ks_unlock();
return err;
}
static inline void *gnaw(uint8_t **mem, size_t *len, const size_t size)
{
if (mem == NULL || *mem == NULL || len == NULL || size > *len)
return NULL;
void *ret = *mem;
*mem += size;
*len -= size;
return ret;
}
hal_error_t hal_ks_alloc_common(hal_ks_t *ks,
const unsigned ks_blocks,
const unsigned cache_blocks,
void **extra,
const size_t extra_len)
{
/*
* We allocate a single big chunk of memory to make it atomic. We
* need all three of our blocks, so this way either all succeed or
* all fail; we allow our caller to piggyback its own memory needs
* (if any) on ours for the same reason.
*/
size_t len = (sizeof(*ks->index) * ks_blocks +
sizeof(*ks->names) * ks_blocks +
sizeof(*ks->cache) * cache_blocks +
extra_len);
uint8_t *mem = hal_allocate_static_memory(len);
if (mem == NULL)
return HAL_ERROR_ALLOCATION_FAILURE;
memset(((uint8_t *) ks) + sizeof(ks->driver), 0,
sizeof(hal_ks_t) - sizeof(ks->driver));
memset(mem, 0, len);
ks->index = gnaw(&mem, &len, sizeof(*ks->index) * ks_blocks);
ks->names = gnaw(&mem, &len, sizeof(*ks->names) * ks_blocks);
ks->cache = gnaw(&mem, &len, sizeof(*ks->cache) * cache_blocks);
ks->size = ks_blocks;
ks->cache_size = cache_blocks;
if (extra != NULL)
*extra = mem;
return HAL_OK;
}
hal_error_t hal_ks_init_common(hal_ks_t *ks)
{
if (ks->index == NULL || ks->names == NULL || ks->cache == NULL)
return HAL_ERROR_IMPOSSIBLE;
ks->used = 0;
for (unsigned i = 0; i < ks->cache_size; i++)
ks->cache[i].blockno = BLOCK_UNUSED;
/*
* Scan existing content of keystore to figure out what we've got.
* This gets a bit involved due to the need to recover from things
* like power failures at inconvenient times.
*/
hal_ks_block_type_t block_types[ks->size];
hal_ks_block_status_t block_status[ks->size];
hal_ks_block_t *block = hal_ks_cache_pick_lru(ks);
unsigned first_erased = BLOCK_UNUSED;
hal_error_t err;
uint16_t n = 0;
if (block == NULL)
return HAL_ERROR_IMPOSSIBLE;
for (unsigned i = 0; i < ks->size; i++) {
/*
* Read one block. If the CRC is bad or the block type is
* unknown, it's old data we don't understand, something we were
* writing when we crashed, or bad flash; in any of these cases,
* we want the block to end up near the end of the free list.
*/
err = hal_ks_block_read(ks, i, block);
if (err == HAL_ERROR_KEYSTORE_BAD_CRC || err == HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE)
block_types[i] = HAL_KS_BLOCK_TYPE_UNKNOWN;
else if (err != HAL_OK)
return err;
else if ((block->header.legacy_1 != 0xFF || block->header.legacy_2 != 0xFF) &&
(block->header.legacy_1 != 0x01 || block->header.legacy_2 != 0x00))
block_types[i] = HAL_KS_BLOCK_TYPE_UNKNOWN;
else
block_types[i] = hal_ks_block_get_type(block);
switch (block_types[i]) {
case HAL_KS_BLOCK_TYPE_KEY:
case HAL_KS_BLOCK_TYPE_PIN:
block_status[i] = hal_ks_block_get_status(block);
break;
default:
block_status[i] = HAL_KS_BLOCK_STATUS_UNKNOWN;
}
/*
* First erased block we see is head of the free list.
*/
if (block_types[i] == HAL_KS_BLOCK_TYPE_ERASED && first_erased == BLOCK_UNUSED)
first_erased = i;
/*
* If it's a valid data block, include it in the index. We remove
* tombstones (if any) below, for now it's easiest to include them
* in the index, so we can look them up by name if we must.
*/
const hal_uuid_t *uuid = NULL;
switch (block_types[i]) {
case HAL_KS_BLOCK_TYPE_KEY: uuid = &block->key.name; break;
case HAL_KS_BLOCK_TYPE_PIN: uuid = &hal_ks_pin_uuid; break;
default: /* Keep GCC happy */ break;
}
if (uuid != NULL) {
ks->names[i] = *uuid;
ks->index[n++] = i;
}
}
ks->used = n;
if (ks->used > ks->size)
return HAL_ERROR_IMPOSSIBLE;
/*
* At this point we've built the (unsorted) index from all the valid
* blocks. Now we need to insert free and unrecognized blocks into
* the free list in our preferred order. It's possible that there's
* a better way to do this than linear scan, but this is just
* integer comparisons in a fairly small data set, so it's probably
* not worth trying to optimize.
*/
if (n < ks->size)
for (unsigned i = 0; i < ks->size; i++)
if (block_types[i] == HAL_KS_BLOCK_TYPE_ERASED)
ks->index[n++] = i;
if (n < ks->size && first_erased != BLOCK_UNUSED)
for (unsigned i = first_erased; i < ks->size; i++)
if (block_types[i] == HAL_KS_BLOCK_TYPE_ZEROED)
ks->index[n++] = i;
if (n < ks->size && first_erased != BLOCK_UNUSED)
for (unsigned i = 0; i < first_erased; i++)
if (block_types[i] == HAL_KS_BLOCK_TYPE_ZEROED)
ks->index[n++] = i;
if (n < ks->size)
for (unsigned i = 0; i < ks->size; i++)
if (block_types[i] == HAL_KS_BLOCK_TYPE_UNKNOWN)
ks->index[n++] = i;
if (ks->used > ks->size)
return HAL_ERROR_IMPOSSIBLE;
/*
* Sort the index, then deal with tombstones. Tombstones are blocks
* left behind when something bad (like a power failure) happened
* while we updating. There can be at most one tombstone and one
* live block for a given UUID. If we find no live block, we need
* to restore it from the tombstone, after which we need to zero the
* tombstone in either case. The sequence of operations while
* updating is designed so that, barring a bug or a hardware
* failure, we should never lose data.
*/
if ((err = hal_ks_index_heapsort(ks)) != HAL_OK)
return err;
for (unsigned b_tomb = 0; b_tomb < ks->size; b_tomb++) {
if (block_status[b_tomb] != HAL_KS_BLOCK_STATUS_TOMBSTONE)
continue;
hal_uuid_t name = ks->names[b_tomb];
int where = -1;
if ((err = hal_ks_index_find(ks, &name, NULL, &where)) != HAL_OK)
return err;
if (b_tomb != ks->index[where]) {
if ((int)ks->used > where + 1 && b_tomb == ks->index[where + 1])
where = where + 1;
else if (0 <= where - 1 && b_tomb == ks->index[where - 1])
where = where - 1;
else
return HAL_ERROR_IMPOSSIBLE;
}
const int matches_next = where + 1 < (int)ks->used && !hal_uuid_cmp(&name, &ks->names[ks->index[where + 1]]);
const int matches_prev = where - 1 >= 0 && !hal_uuid_cmp(&name, &ks->names[ks->index[where - 1]]);
if ((matches_prev && matches_next) ||
(matches_prev && block_status[ks->index[b_tomb - 1]] != HAL_KS_BLOCK_STATUS_LIVE) ||
(matches_next && block_status[ks->index[b_tomb + 1]] != HAL_KS_BLOCK_STATUS_LIVE))
return HAL_ERROR_IMPOSSIBLE;
if (matches_prev || matches_next) {
memmove(&ks->index[where], &ks->index[where + 1], (ks->size - where - 1) * sizeof(*ks->index));
ks->index[ks->size - 1] = b_tomb;
}
else {
unsigned b_live;
if ((err = hal_ks_block_read(ks, b_tomb, block)) != HAL_OK)
return err;
block->header.block_status = HAL_KS_BLOCK_STATUS_LIVE;
if ((err = hal_ks_index_replace(ks, &name, &b_live, &where)) != HAL_OK ||
(err = hal_ks_block_write(ks, b_live, block)) != HAL_OK)
return err;
block_status[b_live] = HAL_KS_BLOCK_STATUS_LIVE;
}
if ((err = hal_ks_block_zero(ks, b_tomb)) != HAL_OK)
return err;
block_types[ b_tomb] = HAL_KS_BLOCK_TYPE_ZEROED;
block_status[b_tomb] = HAL_KS_BLOCK_STATUS_UNKNOWN;
}
/*
* Erase first block on free list if it's not already erased.
*/
if (ks->used < ks->size &&
(err = hal_ks_block_erase_maybe(ks, ks->index[ks->used])) != HAL_OK)
return err;
/*
* And we're finally done.
*/
return HAL_OK;
}
/*
* Log a client out of a keystore.
*/
hal_error_t hal_ks_logout(hal_ks_t *ks, const hal_client_handle_t client)
{
if (ks == NULL || ks->driver == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (ks->driver->logout == NULL)
return HAL_ERROR_NOT_IMPLEMENTED;
hal_ks_lock();
const hal_error_t err = ks->driver->logout(ks, client);
hal_ks_unlock();
return err;
}
/*
* Test whether we like a particular key type.
*/
static inline int acceptable_key_type(const hal_key_type_t type)
{
switch (type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
case HAL_KEY_TYPE_EC_PRIVATE:
case HAL_KEY_TYPE_RSA_PUBLIC:
case HAL_KEY_TYPE_EC_PUBLIC:
case HAL_KEY_TYPE_HASHSIG_PRIVATE:
case HAL_KEY_TYPE_HASHSIG_PUBLIC:
case HAL_KEY_TYPE_HASHSIG_LMS:
case HAL_KEY_TYPE_HASHSIG_LMOTS:
return 1;
default:
return 0;
}
}
/*
* Internal bits of constructing a new key block.
*/
static hal_error_t construct_key_block(hal_ks_block_t *block,
hal_pkey_slot_t *slot,
const uint8_t * const der, const size_t der_len)
{
if (block == NULL || slot == NULL || der == NULL || der_len == 0)
return HAL_ERROR_IMPOSSIBLE;
hal_ks_key_block_t *k = &block->key;
hal_error_t err = HAL_OK;
uint8_t kek[KEK_LENGTH];
size_t kek_len;
memset(block, 0xFF, sizeof(*block));
block->header.block_type = HAL_KS_BLOCK_TYPE_KEY;
block->header.block_status = HAL_KS_BLOCK_STATUS_LIVE;
k->name = slot->name;
k->type = slot->type;
k->curve = slot->curve;
k->flags = slot->flags;
k->der_len = SIZEOF_KS_KEY_BLOCK_DER;
k->attributes_len = 0;
if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
err = hal_aes_keywrap(NULL, kek, kek_len, der, der_len, k->der, &k->der_len);
memset(kek, 0, sizeof(kek));
return err;
}
/*
* Store a key block.
*/
hal_error_t hal_ks_store(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint8_t * const der, const size_t der_len)
{
if (ks == NULL || slot == NULL || der == NULL || der_len == 0 || !acceptable_key_type(slot->type))
return HAL_ERROR_BAD_ARGUMENTS;
hal_error_t err = HAL_OK;
hal_ks_block_t *block;
unsigned b;
hal_ks_lock();
if ((block = hal_ks_cache_pick_lru(ks)) == NULL) {
err = HAL_ERROR_IMPOSSIBLE;
goto done;
}
if ((err = hal_ks_index_add(ks, &slot->name, &b, &slot->hint)) != HAL_OK)
goto done;
hal_ks_cache_mark_used(ks, block, b);
if (ks->used < ks->size)
err = hal_ks_block_erase_maybe(ks, ks->index[ks->used]);
if (err == HAL_OK)
err = construct_key_block(block, slot, der, der_len);
if (err == HAL_OK)
err = hal_ks_block_write(ks, b, block);
if (err == HAL_OK)
err = hal_ks_block_set_owner(ks, b, slot->client, slot->session);
if (err == HAL_OK)
goto done;
memset(block, 0, sizeof(*block));
hal_ks_cache_release(ks, block);
(void) hal_ks_index_delete(ks, &slot->name, NULL, &slot->hint);
done:
hal_ks_unlock();
return err;
}
hal_error_t hal_ks_fetch(hal_ks_t *ks,
hal_pkey_slot_t *slot,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (ks == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_error_t err = HAL_OK;
hal_ks_block_t *block;
size_t k_der_len = 0;
unsigned b;
hal_ks_lock();
if ((err = hal_ks_index_find(ks, &slot->name, &b, &slot->hint)) != HAL_OK ||
(err = hal_ks_block_test_owner(ks, b, slot->client, slot->session)) != HAL_OK ||
(err = hal_ks_block_read_cached(ks, b, &block)) != HAL_OK)
goto unlock;
if (hal_ks_block_get_type(block) != HAL_KS_BLOCK_TYPE_KEY) {
err = HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */
goto unlock;
}
hal_ks_cache_mark_used(ks, block, b);
hal_ks_key_block_t *k = &block->key;
k_der_len = k->der_len;
slot->type = k->type;
slot->curve = k->curve;
slot->flags = k->flags;
if (der == NULL && der_len != NULL)
*der_len = k->der_len;
if (der != NULL && k_der_len <= der_max)
memcpy(der, k->der, k_der_len);
unlock:
hal_ks_unlock();
if (err != HAL_OK)
return err;
if (der != NULL) {
uint8_t kek[KEK_LENGTH];
size_t kek_len, der_len_;
hal_error_t err;
if (der_len == NULL)
der_len = &der_len_;
*der_len = der_max;
DWT_start(DWT_hal_mkm_get_kek);
if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK) {
DWT_stop(DWT_hal_mkm_get_kek);
DWT_start(DWT_hal_aes_keyunwrap);
err = hal_aes_keyunwrap(NULL, kek, kek_len, der, k_der_len, der, der_len);
DWT_stop(DWT_hal_aes_keyunwrap);
}
memset(kek, 0, sizeof(kek));
}
return err;
}
hal_error_t hal_ks_delete(hal_ks_t *ks,
hal_pkey_slot_t *slot)
{
if (ks == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_error_t err = HAL_OK;
unsigned b;
hal_ks_lock();
if ((err = hal_ks_index_delete(ks, &slot->name, &b, &slot->hint)) != HAL_OK ||
(err = hal_ks_block_test_owner(ks, b, slot->client, slot->session)) != HAL_OK)
goto done;
hal_ks_cache_release(ks, hal_ks_cache_find_block(ks, b));
if ((err = hal_ks_block_zero(ks, b)) != HAL_OK)
goto done;
err = hal_ks_block_erase_maybe(ks, ks->index[ks->used]);
done:
hal_ks_unlock();
return err;
}
static inline hal_error_t locate_attributes(hal_ks_block_t *block,
uint8_t **bytes, size_t *bytes_len,
unsigned **attrs_len)
{
if (block == NULL || bytes == NULL || bytes_len == NULL || attrs_len == NULL)
return HAL_ERROR_IMPOSSIBLE;
if (hal_ks_block_get_type(block) != HAL_KS_BLOCK_TYPE_KEY)
return HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE;
*attrs_len = &block->key.attributes_len;
*bytes = block->key.der + block->key.der_len;
*bytes_len = SIZEOF_KS_KEY_BLOCK_DER - block->key.der_len;
return HAL_OK;
}
hal_error_t hal_ks_match(hal_ks_t *ks,
const hal_client_handle_t client,
const hal_session_handle_t session,
const hal_key_type_t type,
const hal_curve_name_t curve,
const hal_key_flags_t mask,
const hal_key_flags_t flags,
const hal_pkey_attribute_t *attributes,
const unsigned attributes_len,
hal_uuid_t *result,
unsigned *result_len,
const unsigned result_max,
const hal_uuid_t * const previous_uuid)
{
if (ks == NULL || (attributes == NULL && attributes_len > 0) ||
result == NULL || result_len == NULL || previous_uuid == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_error_t err = HAL_OK;
hal_ks_block_t *block;
int i = -1;
hal_ks_lock();
*result_len = 0;
err = hal_ks_index_find(ks, previous_uuid, NULL, &i);
if (err == HAL_ERROR_KEY_NOT_FOUND)
i--;
else if (err != HAL_OK)
goto done;
while (*result_len < result_max && ++i < (int)ks->used) {
unsigned b = ks->index[i];
if ((err = hal_ks_block_read_cached(ks, b, &block)) != HAL_OK)
goto done;
if ((err = hal_ks_block_test_owner(ks, b, client, session)) == HAL_ERROR_KEY_NOT_FOUND)
continue;
if (err != HAL_OK)
goto done;
if ((type != HAL_KEY_TYPE_NONE && type != block->key.type) ||
(curve != HAL_CURVE_NONE && curve != block->key.curve) ||
((flags ^ block->key.flags) & mask) != 0)
continue;
if (attributes_len > 0) {
uint8_t need_attr[attributes_len];
uint8_t *bytes = NULL;
size_t bytes_len = 0;
unsigned *attrs_len;
int possible = 1;
memset(need_attr, 1, sizeof(need_attr));
if ((err = locate_attributes(block, &bytes, &bytes_len, &attrs_len)) != HAL_OK)
goto done;
if (*attrs_len > 0) {
hal_pkey_attribute_t attrs[*attrs_len];
if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, NULL)) != HAL_OK)
goto done;
for (unsigned j = 0; possible && j < attributes_len; j++) {
if (!need_attr[j])
continue;
for (hal_pkey_attribute_t *a = attrs; a < attrs + *attrs_len; a++) {
if (a->type != attributes[j].type)
continue;
need_attr[j] = 0;
possible = (a->length == attributes[j].length &&
!memcmp(a->value, attributes[j].value, a->length));
break;
}
}
}
if (!possible || memchr(need_attr, 1, sizeof(need_attr)) != NULL)
continue;
}
result[*result_len] = ks->names[b];
++*result_len;
}
err = HAL_OK;
done:
hal_ks_unlock();
return err;
}
hal_error_t hal_ks_set_attributes(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const hal_pkey_attribute_t *attributes,
const unsigned attributes_len)
{
if (ks == NULL || slot == NULL || attributes == NULL || attributes_len == 0)
return HAL_ERROR_BAD_ARGUMENTS;
hal_error_t err = HAL_OK;
hal_ks_block_t *block;
unsigned b;
hal_ks_lock();
{
if ((err = hal_ks_index_find(ks, &slot->name, &b, &slot->hint)) != HAL_OK ||
(err = hal_ks_block_test_owner(ks, b, slot->client, slot->session)) != HAL_OK ||
(err = hal_ks_block_read_cached(ks, b, &block)) != HAL_OK)
goto done;
hal_ks_cache_mark_used(ks, block, b);
uint8_t *bytes = NULL;
size_t bytes_len = 0;
unsigned *attrs_len;
if ((err = locate_attributes(block, &bytes, &bytes_len, &attrs_len)) != HAL_OK)
goto done;
hal_pkey_attribute_t attrs[*attrs_len + attributes_len];
size_t total;
if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, &total)) != HAL_OK)
goto done;
for (unsigned i = 0; err == HAL_OK && i < attributes_len; i++)
if (attributes[i].length == HAL_PKEY_ATTRIBUTE_NIL)
err = hal_ks_attribute_delete(bytes, bytes_len, attrs, attrs_len, &total,
attributes[i].type);
else
err = hal_ks_attribute_insert(bytes, bytes_len, attrs, attrs_len, &total,
attributes[i].type,
attributes[i].value,
attributes[i].length);
if (err == HAL_OK)
err = hal_ks_block_update(ks, b, block, &slot->name, &slot->hint);
else
hal_ks_cache_release(ks, block);
}
done:
hal_ks_unlock();
return err;
}
hal_error_t hal_ks_get_attributes(hal_ks_t *ks,
hal_pkey_slot_t *slot,
hal_pkey_attribute_t *attributes,
const unsigned attributes_len,
uint8_t *attributes_buffer,
const size_t attributes_buffer_len)
{
if (ks == NULL || slot == NULL || attributes == NULL || attributes_len == 0 ||
attributes_buffer == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
for (unsigned i = 0; i < attributes_len; i++) {
attributes[i].length = 0;
attributes[i].value = NULL;
}
uint8_t *abuf = attributes_buffer;
hal_ks_block_t *block = NULL;
hal_error_t err = HAL_OK;
unsigned found = 0;
unsigned b;
hal_ks_lock();
{
if ((err = hal_ks_index_find(ks, &slot->name, &b, &slot->hint)) != HAL_OK ||
(err = hal_ks_block_test_owner(ks, b, slot->client, slot->session)) != HAL_OK ||
(err = hal_ks_block_read_cached(ks, b, &block)) != HAL_OK)
goto done;
hal_ks_cache_mark_used(ks, block, b);
uint8_t *bytes = NULL;
size_t bytes_len = 0;
unsigned *attrs_len;
if ((err = locate_attributes(block, &bytes, &bytes_len, &attrs_len)) != HAL_OK)
goto done;
if (*attrs_len == 0) {
err = HAL_ERROR_ATTRIBUTE_NOT_FOUND;
goto done;
}
hal_pkey_attribute_t attrs[*attrs_len];
if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, NULL)) != HAL_OK)
goto done;
for (unsigned i = 0; i < attributes_len; i++) {
if (attributes[i].length > 0)
continue;
unsigned j = 0;
while (j < *attrs_len && attrs[j].type != attributes[i].type)
j++;
if (j >= *attrs_len)
continue;
found++;
attributes[i].length = attrs[j].length;
if (attributes_buffer_len == 0)
continue;
if (attrs[j].length > (size_t)(attributes_buffer + attributes_buffer_len - abuf)) {
err = HAL_ERROR_RESULT_TOO_LONG;
goto done;
}
memcpy(abuf, attrs[j].value, attrs[j].length);
attributes[i].value = abuf;
abuf += attrs[j].length;
}
};
if (found < attributes_len && attributes_buffer_len > 0)
err = HAL_ERROR_ATTRIBUTE_NOT_FOUND;
else
err = HAL_OK;
done:
hal_ks_unlock();
return err;
}
hal_error_t hal_ks_rewrite_der(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint8_t * const der, const size_t der_len)
{
if (ks == NULL || slot == NULL || der == NULL || der_len == 0 || !acceptable_key_type(slot->type))
return HAL_ERROR_BAD_ARGUMENTS;
hal_ks_block_t *block = NULL;
hal_error_t err = HAL_OK;
unsigned b;
hal_ks_lock();
{
if ((err = hal_ks_index_find(ks, &slot->name, &b, &slot->hint)) != HAL_OK ||
(err = hal_ks_block_test_owner(ks, b, slot->client, slot->session)) != HAL_OK ||
(err = hal_ks_block_read_cached(ks, b, &block)) != HAL_OK)
goto done;
hal_ks_cache_mark_used(ks, block, b);
size_t bytes_len = 0, attributes_len = 0;
unsigned *count = NULL;
uint8_t *bytes = NULL;
if ((err = locate_attributes(block, &bytes, &bytes_len, &count)) != HAL_OK ||
(err = hal_ks_attribute_scan(bytes, bytes_len, NULL, *count, &attributes_len)) != HAL_OK)
goto done;
if (der_len + attributes_len > SIZEOF_KS_KEY_BLOCK_DER) {
err = HAL_ERROR_RESULT_TOO_LONG;
goto done;
}
uint8_t attributes[attributes_len > 0 ? attributes_len : 1];
hal_ks_key_block_t *k = &block->key;
unsigned attributes_count = *count;
memcpy(attributes, bytes, attributes_len);
if ((err = construct_key_block(block, slot, der, der_len)) != HAL_OK)
goto done;
if (k->der_len + attributes_len > SIZEOF_KS_KEY_BLOCK_DER) {
err = HAL_ERROR_IMPOSSIBLE;
goto done;
}
memcpy(k->der + k->der_len, attributes, attributes_len);
k->attributes_len = attributes_count;
err = hal_ks_block_update(ks, b, block, &slot->name, &slot->hint);
}
done:
hal_ks_unlock();
return err;
}
hal_error_t hal_ks_available(hal_ks_t *ks, size_t *count)
{
if (ks == NULL || count == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_ks_lock();
*count = ks->size - ks->used;
hal_ks_unlock();
return HAL_OK;
}
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/