/*
* keywrap.c
* ---------
* Implementation of RFC 5649 over Cryptech keywrap core.
*
* Authors: Rob Austein
* Copyright (c) 2015-2018, NORDUnet A/S All rights reserved.
* Copyright: 2020, The Commons Conservancy Cryptech Project
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file is derived from aes_keywrap.c, and still shares some code
* with it, but the keywrap core has evolved to the point where it is no
* longer comfortable trying to support both cores in one driver.
*/
#include <stdint.h>
#include <string.h>
#include "hal.h"
#include "hal_internal.h"
typedef union {
uint8_t b[4];
uint32_t w;
} byteword_t;
/*
* Match uninitialized flash for the "not set" value.
* Leave some bits at 1 for the "set" value to allow
* for adding more values later, if needed.
*/
#define MKM_STATUS_NOT_SET 0xffffffff
#define MKM_STATUS_SET 0x0000ffff
#define MKM_STATUS_ERASED 0x00000000
static hal_error_t mkm_status = HAL_ERROR_IMPOSSIBLE;
static inline hal_error_t hal_io_cmd_read(const hal_core_t *core)
{
const uint8_t buf[4] = { 0, 0, 0, KEYWRAP_CTRL_READ };
return hal_io_write(core, ADDR_CTRL, buf, sizeof(buf));
}
static inline hal_error_t hal_io_cmd_write(const hal_core_t *core)
{
const uint8_t buf[4] = { 0, 0, 0, KEYWRAP_CTRL_WRITE };
return hal_io_write(core, ADDR_CTRL, buf, sizeof(buf));
}
/*
* Check the MKM status
*/
hal_error_t hal_keywrap_mkm_status(hal_core_t *core)
{
const int free_core = core == NULL;
uint8_t config[4] = { 0, 0, 0, 0 };
byteword_t status;
hal_error_t err;
if (free_core && (err = hal_core_alloc(KEYWRAP_NAME, &core, NULL)) != HAL_OK)
return err;
if ((err = hal_io_write(core, KEYWRAP_ADDR_CONFIG, config, sizeof(config))) == HAL_OK &&
(err = hal_io_cmd_read(core)) == HAL_OK &&
(err = hal_io_wait_ready(core)) == HAL_OK)
err = hal_io_read(core, KEYWRAP_ADDR_MSTATUS, status.b, 4);
if (free_core)
hal_core_free(core);
if (err != HAL_OK)
return err;
switch (htonl(status.w)) {
case MKM_STATUS_SET: return mkm_status = HAL_OK;
case MKM_STATUS_NOT_SET: return mkm_status = HAL_ERROR_MASTERKEY_NOT_SET;
default: return mkm_status = HAL_ERROR_MASTERKEY_FAIL;
}
}
hal_error_t hal_keywrap_mkm_write(hal_core_t *core, const uint8_t *K, const size_t K_len)
{
const int free_core = core == NULL;
uint8_t config[4] = { 0, 0, 0, 0 };
byteword_t status;
hal_error_t err;
if (K == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (K_len != KEK_LENGTH)
return HAL_ERROR_MASTERKEY_BAD_LENGTH;
status.w = htonl(MKM_STATUS_NOT_SET);
for (size_t i = 0; i < K_len; ++i) {
if (K[i] != 0) {
status.w = htonl(MKM_STATUS_SET);
break;
}
}
if (free_core && (err = hal_core_alloc(KEYWRAP_NAME, &core, NULL)) != HAL_OK)
return err;
/* first write the key */
config[3] |= KEYWRAP_CONFIG_MKS;
if ((err = hal_io_write(core, KEYWRAP_ADDR_KEY0, K, K_len)) != HAL_OK ||
(err = hal_io_write(core, KEYWRAP_ADDR_CONFIG, config, sizeof(config))) != HAL_OK ||
(err = hal_io_cmd_write(core)) != HAL_OK ||
(err = hal_io_wait_ready(core)) != HAL_OK)
goto out;
/* then write the status */
config[3] &= ~KEYWRAP_CONFIG_MKS;
if ((err = hal_io_write(core, KEYWRAP_ADDR_MSTATUS, status.b, 4)) != HAL_OK ||
(err = hal_io_write(core, KEYWRAP_ADDR_CONFIG, config, sizeof(config))) != HAL_OK ||
(err = hal_io_cmd_write(core)) != HAL_OK ||
(err = hal_io_wait_ready(core)) != HAL_OK)
goto out;
out:
if (free_core)
hal_core_free(core);
return err;
}
hal_error_t hal_keywrap_mkm_erase(hal_core_t *core, const size_t K_len)
{
uint8_t buf[KEK_LENGTH] = { 0 };
return hal_keywrap_mkm_write(core, buf, sizeof(buf));
}
/*
* How long the ciphertext will be for a given plaintext length.
* This rounds up the length to a multiple of 8, and adds 8 for the IV.
*/
static size_t hal_keywrap_ciphertext_length(const size_t plaintext_length)
{
return (plaintext_length + 15) & ~7;
}
/*
* Check the KEK, then load it into the AES core.
* Note that our AES core only supports 128 and 256 bit keys.
*/
typedef enum { KEK_encrypting, KEK_decrypting } kek_action_t;
static hal_error_t load_kek(hal_core_t *core, const uint8_t *K, const size_t K_len, const kek_action_t action)
{
uint8_t config[4] = { 0 };
hal_error_t err;
if (K != NULL) {
/* user-provided KEK, for key export/import */
config[3] |= KEYWRAP_CONFIG_MKK;
if ((err = hal_io_write(core, AES_ADDR_KEY0, K, K_len)) != HAL_OK)
return err;
switch (K_len) {
case bitsToBytes(128):
config[3] &= ~KEYWRAP_CONFIG_KEYLEN;
break;
case bitsToBytes(256):
config[3] |= KEYWRAP_CONFIG_KEYLEN;
break;
case bitsToBytes(192):
return HAL_ERROR_UNSUPPORTED_KEY;
default:
return HAL_ERROR_BAD_ARGUMENTS;
}
}
else {
/* read the MKM KEK into the keywrap core */
if (mkm_status != HAL_OK &&
(err = hal_keywrap_mkm_status(core)) != HAL_OK)
return err;
config[3] &= ~KEYWRAP_CONFIG_MKS;
if ((err = hal_io_write(core, KEYWRAP_ADDR_CONFIG, config, sizeof(config))) != HAL_OK ||
(err = hal_io_cmd_read(core)) != HAL_OK ||
(err = hal_io_wait_ready(core)) != HAL_OK)
return err;
config[3] &= ~KEYWRAP_CONFIG_MKK;
config[3] |= KEYWRAP_CONFIG_KEYLEN; /* XXX hardwire to 256-bits for now */
}
switch (action) {
case KEK_encrypting:
config[3] |= KEYWRAP_CONFIG_ENCDEC;
break;
case KEK_decrypting:
config[3] &= ~KEYWRAP_CONFIG_ENCDEC;
break;
default:
return HAL_ERROR_BAD_ARGUMENTS;
}
/*
* Load the KEK and tell the core to expand it.
*/
if ((err = hal_io_write(core, KEYWRAP_ADDR_CONFIG, config, sizeof(config))) != HAL_OK ||
(err = hal_io_init(core)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* Wrap/unwrap n 64-bit blocks of plaintext.
* The wrapped/unwrapped key is returned in the same buffer.
*/
static hal_error_t do_wrap_unwrap(hal_core_t *core, uint8_t * const C, const size_t n)
{
hal_error_t err;
hal_assert(core != NULL && C != NULL && n > 0);
/* n is the number of 64-bit (8-byte) blocks in the input.
* KEYWRAP_LEN_R_DATA is the number of 4-byte data registers in the core.
*/
if (n == 0 || n > KEYWRAP_LEN_R_DATA * 2)
return HAL_ERROR_BAD_ARGUMENTS;
/* write the AIV to A */
if ((err = hal_io_write(core, KEYWRAP_ADDR_A0, C, 8)) != HAL_OK)
return err;
/* write the length to RLEN */
uint32_t nn = htonl(n);
if ((err = hal_io_write(core, KEYWRAP_ADDR_RLEN, (const uint8_t *)&nn, 4)) != HAL_OK)
return err;
/* write the data to R_DATA */
if ((err = hal_io_write(core, KEYWRAP_ADDR_R_DATA, C + 8, 8 * n)) != HAL_OK)
return err;
/* start the wrap/unwrap operation, and wait for it to complete */
if ((err = hal_io_next(core)) != HAL_OK ||
(err = hal_io_wait_ready(core)) != HAL_OK)
return err;
/* read the A registers */
if ((err = hal_io_read(core, KEYWRAP_ADDR_A0, C, 8)) != HAL_OK)
return err;
/* read the data from R_DATA */
if ((err = hal_io_read(core, KEYWRAP_ADDR_R_DATA, C + 8, 8 * n)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* Wrap plaintext Q using KEK K, placing result in C.
*
* Q and C can overlap. For encrypt-in-place, use Q = C + 8 (that is,
* leave 8 empty bytes before the plaintext).
*
* Use hal_keywrap_ciphertext_length() to calculate the correct
* buffer size.
*/
hal_error_t hal_keywrap_wrap(hal_core_t *core,
const uint8_t *K, const size_t K_len,
const uint8_t * const Q,
const size_t Q_len,
uint8_t *C,
size_t *C_len)
{
const size_t calculated_C_len = hal_keywrap_ciphertext_length(Q_len);
const int free_core = (core == NULL);
hal_error_t err;
size_t n;
hal_assert(calculated_C_len % 8 == 0);
if (Q == NULL || C == NULL || C_len == NULL || *C_len < calculated_C_len)
return HAL_ERROR_BAD_ARGUMENTS;
if (free_core && (err = hal_core_alloc(KEYWRAP_NAME, &core, NULL)) != HAL_OK)
return err;
if ((err = load_kek(core, K, K_len, KEK_encrypting)) != HAL_OK)
goto out;
*C_len = calculated_C_len;
if (C + 8 != Q)
memmove(C + 8, Q, Q_len);
if (Q_len % 8 != 0)
memset(C + 8 + Q_len, 0, 8 - (Q_len % 8));
C[0] = 0xA6;
C[1] = 0x59;
C[2] = 0x59;
C[3] = 0xA6;
C[4] = (Q_len >> 24) & 0xFF;
C[5] = (Q_len >> 16) & 0xFF;
C[6] = (Q_len >> 8) & 0xFF;
C[7] = (Q_len >> 0) & 0xFF;
n = calculated_C_len/8 - 1;
/* Make sure the key expansion has completed. */
if ((err = hal_io_wait_ready(core)) != HAL_OK)
goto out;
err = do_wrap_unwrap(core, C, n);
out:
if (free_core)
hal_core_free(core);
return err;
}
/*
* Unwrap ciphertext C using KEK K, placing result in Q.
*
* Q should be the same size as C. Q and C can overlap.
*/
hal_error_t hal_keywrap_unwrap(hal_core_t *core,
const uint8_t *K, const size_t K_len,
const uint8_t * const C,
const size_t C_len,
uint8_t *Q,
size_t *Q_len)
{
const int free_core = core == NULL;
hal_error_t err;
size_t n;
size_t m;
if (C == NULL || Q == NULL || C_len % 8 != 0 || C_len < 16 || Q_len == NULL || *Q_len < C_len)
return HAL_ERROR_BAD_ARGUMENTS;
if (free_core && (err = hal_core_alloc(KEYWRAP_NAME, &core, NULL)) != HAL_OK)
return err;
if ((err = load_kek(core, K, K_len, KEK_decrypting)) != HAL_OK)
goto out;
n = (C_len / 8) - 1;
if (Q != C)
memmove(Q, C, C_len);
/* Make sure the key expansion has completed. */
if ((err = hal_io_wait_ready(core)) != HAL_OK)
goto out;
if ((err = do_wrap_unwrap(core, Q, n)) != HAL_OK)
goto out;
if (Q[0] != 0xA6 || Q[1] != 0x59 || Q[2] != 0x59 || Q[3] != 0xA6) {
err = HAL_ERROR_KEYWRAP_BAD_MAGIC;
goto out;
}
m = (((((Q[4] << 8) + Q[5]) << 8) + Q[6]) << 8) + Q[7];
if (m <= 8 * (n - 1) || m > 8 * n) {
err = HAL_ERROR_KEYWRAP_BAD_LENGTH;
goto out;
}
if (m % 8 != 0)
for (size_t i = m + 8; i < 8 * (n + 1); i++)
if (Q[i] != 0x00) {
err = HAL_ERROR_KEYWRAP_BAD_PADDING;
goto out;
}
*Q_len = m;
memmove(Q, Q + 8, m);
out:
if (free_core)
hal_core_free(core);
return err;
}
/*
* "Any programmer who fails to comply with the standard naming, formatting,
* or commenting conventions should be shot. If it so happens that it is
* inconvenient to shoot him, then he is to be politely requested to recode
* his program in adherence to the above standard."
* -- Michael Spier, Digital Equipment Corporation
*
* Local variables:
* indent-tabs-mode: nil
* End:
*/