1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
//======================================================================
//
// mkmif_spi.v
// -----------
// SPI interface for the master key memory. When enabled the
// interface waits for command to transmit and receive a given
// number of bytes. Data is transmitted onto the spi_di port
// from the MSB of the spi_data register. Simultaneously,
// data captured on the spi_do port is inserted at LSB in the
// spi_data register. The spi clock is generated when data is to be
// sent or recived.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2016, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module mkmif_spi(
input wire clk,
input wire reset_n,
output wire spi_sclk,
output wire spi_cs_n,
input wire spi_do,
output wire spi_di,
input wire set,
input wire start,
input wire [2 : 0] length,
input wire [15 : 0] divisor,
output wire ready,
input wire [55 : 0] wr_data,
output wire [31 : 0] rd_data
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
localparam CTRL_IDLE = 2'h0;
localparam CTRL_START = 2'h1;
localparam CTRL_WAIT = 2'h2;
localparam CTRL_DONE = 2'h3;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg do_sample0_reg;
reg do_sample1_reg;
reg cs_n_reg;
reg cs_n_new;
reg cs_n_we;
reg ready_reg;
reg ready_new;
reg ready_we;
reg [55 : 0] data_reg;
reg [55 : 0] data_new;
reg data_set;
reg data_nxt;
reg data_we;
reg sclk_reg;
reg sclk_new;
reg sclk_rst;
reg sclk_en;
reg sclk_we;
reg [15 : 0] clk_ctr_reg;
reg [15 : 0] clk_ctr_new;
reg clk_ctr_we;
reg [5 : 0] bit_ctr_reg;
reg [5 : 0] bit_ctr_new;
reg bit_ctr_rst;
reg bit_ctr_inc;
reg bit_ctr_done;
reg bit_ctr_we;
reg [2 : 0] length_reg;
reg length_we;
reg [15 : 0] divisor_reg;
reg divisor_we;
reg [1 : 0] spi_ctrl_reg;
reg [1 : 0] spi_ctrl_new;
reg spi_ctrl_we;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign spi_sclk = sclk_reg;
assign spi_cs_n = cs_n_reg;
assign spi_di = data_reg[55];
assign rd_data = data_reg[31 : 0];
assign ready = ready_reg;
//----------------------------------------------------------------
// reg_update
// Update functionality for all registers in the core.
// All registers are positive edge triggered with asynchronous
// active low reset.
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin
if (!reset_n)
begin
do_sample0_reg <= 1'h0;
do_sample1_reg <= 1'h0;
cs_n_reg <= 1'h1;
ready_reg <= 1'h0;
length_reg <= 3'h0;
divisor_reg <= 16'h0;
data_reg <= 56'h0;
sclk_reg <= 1'h0;
clk_ctr_reg <= 16'h0;
bit_ctr_reg <= 6'h0;
spi_ctrl_reg <= CTRL_IDLE;
end
else
begin
do_sample0_reg <= spi_do;
do_sample1_reg <= do_sample0_reg;
if (cs_n_we)
cs_n_reg <= cs_n_new;
if (ready_we)
ready_reg <= ready_new;
if (data_we)
data_reg <= data_new;
if (length_we)
length_reg <= length;
if (divisor_we)
divisor_reg <= divisor;
if (sclk_we)
sclk_reg <= sclk_new;
if (clk_ctr_we)
clk_ctr_reg <= clk_ctr_new;
if (bit_ctr_we)
bit_ctr_reg <= bit_ctr_new;
if (spi_ctrl_we)
spi_ctrl_reg <= spi_ctrl_new;
end
end // reg_update
//----------------------------------------------------------------
// data_gen
//
// Generate the data bitstream to be written out to the external
// SPI connected memory. Basically a shift register.
// Note that we also shift in data received from the external
// memory.
//----------------------------------------------------------------
always @*
begin : data_gen
data_new = 56'h0;
data_we = 0;
if (data_set)
begin
data_new = wr_data;
data_we = 1;
end
if (data_nxt)
begin
data_new = {data_reg[54 : 0], do_sample1_reg};
data_we = 1;
end
end // data_gen
//----------------------------------------------------------------
// sclk_gen
//
// Generator of the spi_sclk clock.
//----------------------------------------------------------------
always @*
begin : sclk_gen
sclk_new = 0;
sclk_we = 0;
clk_ctr_new = 0;
clk_ctr_we = 0;
data_nxt = 0;
bit_ctr_rst = 0;
bit_ctr_inc = 0;
if (sclk_rst)
begin
clk_ctr_new = 0;
clk_ctr_we = 1;
bit_ctr_rst = 1;
sclk_new = 0;
sclk_we = 1;
end
if (sclk_en)
begin
if (clk_ctr_reg == divisor_reg)
begin
clk_ctr_new = 0;
clk_ctr_we = 1'b1;
sclk_new = ~sclk_reg;
sclk_we = 1;
if (sclk_reg)
begin
bit_ctr_inc = 1;
data_nxt = 1;
end
end
else
begin
clk_ctr_new = clk_ctr_reg + 1'b1;
clk_ctr_we = 1'b1;
end
end
end // sclk_gen
//----------------------------------------------------------------
// bit_ctr
//
// Bit counter used by the FSM to keep track of the number bits
// being read from or written to the memory.
//----------------------------------------------------------------
always @*
begin : bit_ctr
bit_ctr_new = 6'h0;
bit_ctr_we = 1'b0;
bit_ctr_done = 1'b0;
if (bit_ctr_reg == {length_reg, 3'h0})
bit_ctr_done = 1'b1;
if (bit_ctr_rst)
begin
bit_ctr_new = 6'h0;
bit_ctr_we = 1'b1;
end
if (bit_ctr_inc)
begin
bit_ctr_new = bit_ctr_reg + 1'b1;
bit_ctr_we = 1'b1;
end
end // bit_ctr
//----------------------------------------------------------------
// spi_ctrl
//
// Control FSM for the SPI interface.
//----------------------------------------------------------------
always @*
begin : spi_ctrl
sclk_en = 0;
sclk_rst = 0;
cs_n_new = 1;
cs_n_we = 0;
data_set = 0;
length_we = 0;
divisor_we = 0;
ready_new = 0;
ready_we = 0;
spi_ctrl_new = CTRL_IDLE;
spi_ctrl_we = 0;
case (spi_ctrl_reg)
CTRL_IDLE:
begin
ready_new = 1;
ready_we = 1;
if (set)
begin
data_set = 1;
length_we = 1;
divisor_we = 1;
end
if (start)
begin
ready_new = 0;
ready_we = 1;
sclk_rst = 1;
spi_ctrl_new = CTRL_START;
spi_ctrl_we = 1;
end
end
CTRL_START:
begin
cs_n_new = 0;
cs_n_we = 1;
spi_ctrl_new = CTRL_WAIT;
spi_ctrl_we = 1;
end
CTRL_WAIT:
begin
sclk_en = 1;
if (bit_ctr_done)
begin
spi_ctrl_new = CTRL_DONE;
spi_ctrl_we = 1;
end
end
CTRL_DONE:
begin
ready_new = 1;
ready_we = 1;
cs_n_new = 1;
cs_n_we = 1;
spi_ctrl_new = CTRL_IDLE;
spi_ctrl_we = 1;
end
default:
begin
end
endcase // case (spi_ctrl_reg)
end // spi_ctrl
endmodule // mkmif_spi
//======================================================================
// EOF mkmif_spi.v
//======================================================================
|