1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
//======================================================================
//
// trng_csprng_fifo.v
// ------------------
// Output FIFO for the CSPRNG in the TRNG.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2014, NORDUnet A/S
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module trng_csprng_fifo(
// Clock and reset.
input wire clk,
input wire reset_n,
input wire [511 : 0] csprng_data,
input wire csprng_data_valid,
input wire discard,
output wire more_data,
output wire rnd_syn,
output wire [31 : 0] rnd_data,
input wire rnd_ack
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
localparam FIFO_ADDR_BITS = 2;
localparam FIFO_ADDR_MAX = (2 ** FIFO_ADDR_BITS) - 1;
localparam FIFO_MAX = (2 ** FIFO_ADDR_BITS);
localparam WR_IDLE = 0;
localparam WR_WAIT = 1;
localparam WR_NEXT = 2;
localparam WR_DISCARD = 7;
localparam RD_IDLE = 0;
localparam RD_ACK = 1;
localparam RD_DISCARD = 7;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [511 : 0] fifo_mem [0 : FIFO_ADDR_MAX];
reg fifo_mem_we;
reg [3 : 0] mux_data_ptr_reg;
reg [3 : 0] mux_data_ptr_new;
reg mux_data_ptr_inc;
reg mux_data_ptr_rst;
reg mux_data_ptr_we;
reg [(FIFO_ADDR_BITS - 1) : 0] rd_ptr_reg;
reg [(FIFO_ADDR_BITS - 1) : 0] rd_ptr_new;
reg rd_ptr_inc;
reg rd_ptr_rst;
reg rd_ptr_we;
reg [(FIFO_ADDR_BITS - 1) : 0] wr_ptr_reg;
reg [(FIFO_ADDR_BITS - 1) : 0] wr_ptr_new;
reg wr_ptr_inc;
reg wr_ptr_rst;
reg wr_ptr_we;
reg [FIFO_ADDR_BITS : 0] fifo_ctr_reg;
reg [FIFO_ADDR_BITS : 0] fifo_ctr_new;
reg fifo_ctr_inc;
reg fifo_ctr_dec;
reg fifo_ctr_rst;
reg fifo_ctr_we;
reg fifo_empty;
reg fifo_full;
reg [31 : 0] rnd_data_reg;
reg rnd_syn_reg;
reg rnd_syn_new;
reg rnd_syn_we;
reg [2 : 0] rd_ctrl_reg;
reg [2 : 0] rd_ctrl_new;
reg rd_ctrl_we;
reg [2 : 0] wr_ctrl_reg;
reg [2 : 0] wr_ctrl_new;
reg wr_ctrl_we;
reg more_data_reg;
reg more_data_new;
reg more_data_we;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
reg [31 : 0] muxed_data;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign rnd_data = rnd_data_reg;
assign rnd_syn = rnd_syn_reg;
assign more_data = more_data_reg;
//----------------------------------------------------------------
// reg_update
//
// Register update. All registers have asynchronous reset.
//----------------------------------------------------------------
always @ (posedge clk)
begin
if (!reset_n)
begin
fifo_mem[00] <= {512'h0};
fifo_mem[01] <= {512'h0};
fifo_mem[02] <= {512'h0};
fifo_mem[03] <= {512'h0};
mux_data_ptr_reg <= 4'h0;
rd_ptr_reg <= {(FIFO_ADDR_BITS){1'b0}};
wr_ptr_reg <= {(FIFO_ADDR_BITS){1'b0}};
fifo_ctr_reg <= {FIFO_ADDR_BITS{1'b0}};
rnd_data_reg <= 32'h0;
rnd_syn_reg <= 0;
more_data_reg <= 0;
wr_ctrl_reg <= WR_IDLE;
rd_ctrl_reg <= RD_IDLE;
end
else
begin
rnd_data_reg <= muxed_data;
if (more_data_we)
more_data_reg <= more_data_new;
if (rnd_syn_we)
rnd_syn_reg <= rnd_syn_new;
if (fifo_mem_we)
fifo_mem[wr_ptr_reg] <= csprng_data;
if (mux_data_ptr_we)
mux_data_ptr_reg <= mux_data_ptr_new;
if (rd_ptr_we)
rd_ptr_reg <= rd_ptr_new;
if (wr_ptr_we)
wr_ptr_reg <= wr_ptr_new;
if (fifo_ctr_we)
fifo_ctr_reg <= fifo_ctr_new;
if (rd_ctrl_we)
rd_ctrl_reg <= rd_ctrl_new;
if (wr_ctrl_we)
wr_ctrl_reg <= wr_ctrl_new;
end
end // reg_update
//----------------------------------------------------------------
// output_data_mux
//
// Logic that reads out a 512 bit word from the fifo memory
// and then selects a 32-bit word as output data.
//----------------------------------------------------------------
always @*
begin : output_data_mux
reg [511 : 0] fifo_rd_data;
fifo_rd_data = fifo_mem[rd_ptr_reg];
muxed_data = fifo_rd_data[mux_data_ptr_reg * 32 +: 32];
end // output_data_mux
//----------------------------------------------------------------
// mux_data_ptr
//
// Pointer for selecting output data word from the 512 bit
// word currently being read in the FIFO.
//----------------------------------------------------------------
always @*
begin : mux_data_ptr
mux_data_ptr_new = 4'h0;
mux_data_ptr_we = 0;
if (mux_data_ptr_rst)
begin
mux_data_ptr_new = 4'h0;
mux_data_ptr_we = 1;
end
if (mux_data_ptr_inc)
begin
mux_data_ptr_new = mux_data_ptr_reg + 1'b1;
mux_data_ptr_we = 1;
end
end // mux_data_ptr
//----------------------------------------------------------------
// fifo_rd_ptr
//
// Pointer that selects the current 512 bit word in the FIFO
// to extract data from.
//----------------------------------------------------------------
always @*
begin : fifo_rd_ptr
rd_ptr_new = {FIFO_ADDR_BITS{1'b0}};
rd_ptr_we = 0;
fifo_ctr_dec = 0;
if (rd_ptr_rst)
begin
rd_ptr_new = {FIFO_ADDR_BITS{1'b0}};
rd_ptr_we = 1;
end
if (rd_ptr_inc)
begin
fifo_ctr_dec = 1;
rd_ptr_new = rd_ptr_reg + 1'b1;
rd_ptr_we = 1;
end
end // fifo_rd_ptr
//----------------------------------------------------------------
// fifo_wr_ptr
//
// Pointer to where to store a new 512 bit word in the FIFO.
//----------------------------------------------------------------
always @*
begin : fifo_wr_ptr
wr_ptr_new = {FIFO_ADDR_BITS{1'b0}};
wr_ptr_we = 0;
fifo_ctr_inc = 0;
if (wr_ptr_rst)
begin
wr_ptr_new = {FIFO_ADDR_BITS{1'b0}};
wr_ptr_we = 1;
end
if (wr_ptr_inc)
begin
fifo_ctr_inc = 1;
wr_ptr_new = wr_ptr_reg + 1'b1;
wr_ptr_we = 1;
end
end // fifo_wr_ptr
//----------------------------------------------------------------
// fifo_ctr
//
// fifo counter tracks the number of 512 bit elements currently
// in the fifp. The counter also signals the csprng when more
// data is needed. The fifo also signals applications when
// random numbers are available, that is there is at least
// one elemnt in the fifo with 32-bit words not yet used.
//----------------------------------------------------------------
always @*
begin : fifo_ctr
fifo_ctr_new = {(FIFO_ADDR_BITS + 1){1'b0}};
fifo_ctr_we = 0;
fifo_empty = 0;
fifo_full = 0;
if (fifo_ctr_reg == 0)
begin
fifo_empty = 1;
end
if (fifo_ctr_reg == FIFO_MAX)
begin
fifo_full = 1;
end
if (fifo_ctr_rst)
begin
fifo_ctr_new = {(FIFO_ADDR_BITS + 1){1'b0}};
fifo_ctr_we = 1;
end
if (fifo_ctr_inc)
begin
fifo_ctr_new = fifo_ctr_reg + 1'b1;
fifo_ctr_we = 1;
end
if (fifo_ctr_dec)
begin
fifo_ctr_new = fifo_ctr_reg - 1'b1;
fifo_ctr_we = 1;
end
end // fifo_ctr
//----------------------------------------------------------------
// rd_ctrl
//
// Control FSM for reading data as requested by the consumers.
//----------------------------------------------------------------
always @*
begin : rd_ctrl
mux_data_ptr_rst = 0;
mux_data_ptr_inc = 0;
rnd_syn_new = 0;
rnd_syn_we = 0;
rd_ptr_inc = 0;
rd_ptr_rst = 0;
rd_ctrl_new = RD_IDLE;
rd_ctrl_we = 0;
case (rd_ctrl_reg)
RD_IDLE:
begin
if (discard)
begin
rd_ctrl_new = RD_DISCARD;
rd_ctrl_we = 1;
end
else
begin
if (!fifo_empty)
begin
rnd_syn_new = 1;
rnd_syn_we = 1;
rd_ctrl_new = RD_ACK;
rd_ctrl_we = 1;
end
end
end
RD_ACK:
begin
if (discard)
begin
rd_ctrl_new = RD_DISCARD;
rd_ctrl_we = 1;
end
else
begin
if (rnd_ack)
begin
if (mux_data_ptr_reg == 4'hf)
begin
rd_ptr_inc = 1;
mux_data_ptr_rst = 1;
end
else
begin
mux_data_ptr_inc = 1;
end
rnd_syn_new = 0;
rnd_syn_we = 1;
rd_ctrl_new = RD_IDLE;
rd_ctrl_we = 1;
end
end
end
RD_DISCARD:
begin
rnd_syn_new = 0;
rnd_syn_we = 1;
rd_ptr_rst = 1;
rd_ctrl_new = RD_IDLE;
rd_ctrl_we = 1;
end
endcase // case (rd_ctrl_reg)
end // rd_ctrl
//----------------------------------------------------------------
// wr_ctrl
//
// FSM for requesting data and writing new data to the fifo.
//----------------------------------------------------------------
always @*
begin : wr_ctrl
wr_ptr_inc = 0;
wr_ptr_rst = 0;
fifo_mem_we = 0;
fifo_ctr_rst = 0;
more_data_new = 0;
more_data_we = 0;
wr_ctrl_new = WR_IDLE;
wr_ctrl_we = 0;
case (wr_ctrl_reg)
WR_IDLE:
begin
if (discard)
begin
wr_ctrl_new = WR_DISCARD;
wr_ctrl_we = 1;
end
else
begin
if (!fifo_full)
begin
more_data_new = 1'b1;
more_data_we = 1'b1;
wr_ctrl_new = WR_WAIT;
wr_ctrl_we = 1;
end
else
begin
more_data_new = 1'b0;
more_data_we = 1'b1;
end
end
end
WR_WAIT:
begin
if (csprng_data_valid)
begin
fifo_mem_we = 1;
wr_ptr_inc = 1;
wr_ctrl_new = WR_NEXT;
wr_ctrl_we = 1;
end
end
WR_NEXT:
begin
more_data_new = 1'b0;
more_data_we = 1'b1;
wr_ctrl_new = WR_IDLE;
wr_ctrl_we = 1;
end
WR_DISCARD:
begin
fifo_ctr_rst = 1;
wr_ptr_rst = 1;
wr_ctrl_new = WR_IDLE;
wr_ctrl_we = 1;
end
endcase // case (wr_ctrl_reg)
end // wr_ctrl
endmodule // trng_csprng_fifo
//======================================================================
// EOF trng_csprng_fifo.v
//======================================================================
|