1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
//======================================================================
//
// alpha_top.v
// ------------
// Top module for the Cryptech Alpha FPGA framework. This design
// allow us to run the FMC interface at one clock and cores including
// core selector with the always present global clock.
//
//
// Author: Pavel Shatov
// Copyright (c) 2016, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
`timescale 1ns / 1ps
module alpha_fmc_top
(
input wire gclk_pin, // 50 MHz
input wire ct_noise, // cryptech avalanche noise circuit
input wire fmc_clk, // clock
input wire [23: 0] fmc_a, // address
inout wire [31: 0] fmc_d, // data
input wire fmc_ne1, // chip select
input wire fmc_noe, // output enable
input wire fmc_nwe, // write enable
input wire fmc_nl, // latch enable
output wire fmc_nwait,// wait
output wire mkm_sclk,
output wire mkm_cs_n,
input wire mkm_do,
output wire mkm_di,
output wire [3: 0] led_pins // {red, yellow, green, blue}
);
//----------------------------------------------------------------
// Clock Manager
//
// Clock manager is used to generate SYS_CLK from GCLK
// and implement the reset logic.
// ----------------------------------------------------------------
wire sys_clk;
wire sys_rst_n;
alpha_clkmgr #
(
.CLK_OUT_MUL (20.0), // 2..64
.CLK_OUT_DIV (20.0) // 1..128
)
clkmgr
(
.gclk (gclk_pin),
.sys_clk (sys_clk),
.sys_rst_n (sys_rst_n)
);
//----------------------------------------------------------------
// BUFG
//
// FMC clock must be routed through the global clocking backbone.
// ----------------------------------------------------------------
wire fmc_clk_bug;
BUFG BUFG_fmc_clk
(
.I (fmc_clk),
.O (fmc_clk_bufg)
);
//----------------------------------------------------------------
// FMC Arbiter
//
// FMC arbiter handles FMC access and transfers it into
// `sys_clk' clock domain.
//----------------------------------------------------------------
//`define test
wire [23: 0] sys_fmc_addr; // address
wire sys_fmc_wren; // write enable
wire sys_fmc_rden; // read enable
wire [31: 0] sys_fmc_dout; // data output (from STM32 to FPGA)
`ifdef test
reg [31: 0] sys_fmc_din; // data input (from FPGA to STM32)
`else
wire [31: 0] sys_fmc_din; // data input (from FPGA to STM32)
`endif
fmc_arbiter #
(
.NUM_ADDR_BITS(24) // change to 26 when Alpha is alive!
)
fmc
(
.fmc_clk(fmc_clk_bufg),
.fmc_a(fmc_a),
.fmc_d(fmc_d),
.fmc_ne1(fmc_ne1),
.fmc_nl(fmc_nl),
.fmc_nwe(fmc_nwe),
.fmc_noe(fmc_noe),
.fmc_nwait(fmc_nwait),
.sys_clk(sys_clk),
.sys_addr(sys_fmc_addr),
.sys_wr_en(sys_fmc_wren),
.sys_rd_en(sys_fmc_rden),
.sys_data_out(sys_fmc_dout),
.sys_data_in(sys_fmc_din)
);
//----------------------------------------------------------------
// LED Driver
//
// A simple utility LED driver that turns on the Alpha
// board LED when the FMC interface is active.
//----------------------------------------------------------------
fmc_indicator led
(
.sys_clk(sys_clk),
.sys_rst_n(sys_rst_n),
.fmc_active(sys_fmc_wren | sys_fmc_rden),
.led_out(led_pins[0])
);
`ifdef test
//----------------------------------------------------------------
// Dummy Register
//
// General-purpose register to test FMC interface using STM32
// demo program instead of core selector logic.
//
// This register is a bit tricky, but it allows testing of both
// data and address buses. Reading from FPGA will always return
// value, which is currently stored in the test register,
// regardless of read transaction address. Writing to FPGA has
// two variants: a) writing to address 0 will store output data
// data value in the test register, b) writing to any non-zero
// address will store _address_ of write transaction in the test
// register.
//
// To test data bus, write some different patterns to address 0,
// then readback from any address and compare.
//
// To test address bus, write anything to some different non-zero
// addresses, then readback from any address and compare returned
// value with previously written address.
//
//----------------------------------------------------------------
reg [31: 0] test_reg;
//
// Noise Capture Register
//
reg [31: 0] noise_reg;
always @(posedge sys_clk)
//
noise_reg <= {noise_reg[30:0], ct_noise};
always @(posedge sys_clk)
//
if (sys_fmc_wren) begin
//
// when writing to address 0, store input data value
//
// when writing to non-zero address, store _address_
// (padded with zeroes) instead of data
//
test_reg <= (sys_fmc_addr == {24{1'b0}}) ? sys_fmc_dout : {{8{1'b0}}, sys_fmc_addr};
//
end else if (sys_fmc_rden) begin
//
// always return current value, ignore address
//
sys_fmc_din <= (sys_fmc_addr == {24{1'b1}}) ? noise_reg : test_reg;
// when reading from address 0, return the current value
// when reading from other addresses, return the address
//sys_fmc_din <= (sys_fmc_addr == {22{1'b0}}) ? test_reg : {{10{1'b0}}, sys_fmc_addr};
//
end
`else // !`ifdef test
//----------------------------------------------------------------
// Core Selector
//
// This multiplexer is used to map different types of cores, such as
// hashes, RNGs and ciphers to different regions (segments) of memory.
//----------------------------------------------------------------
core_selector cores
(
.sys_clk(sys_clk),
.sys_rst_n(sys_rst_n),
.sys_fmc_addr(sys_fmc_addr),
.sys_fmc_wr(sys_fmc_wren),
.sys_fmc_rd(sys_fmc_rden),
.sys_write_data(sys_fmc_dout),
.sys_read_data(sys_fmc_din),
.noise(ct_noise),
.mkm_sclk(mkm_sclk),
.mkm_cs_n(mkm_cs_n),
.mkm_do(mkm_do),
.mkm_di(mkm_di)
);
`endif
//
// Dummy assignment to bypass unconnected outpins pins check in BitGen
//
assign led_pins[3:1] = 3'b000;
endmodule
|