summaryrefslogtreecommitdiff
path: root/stm32
diff options
context:
space:
mode:
authorPavel V. Shatov (Meister) <meisterpaul1@yandex.ru>2018-11-09 18:14:48 +0300
committerPavel V. Shatov (Meister) <meisterpaul1@yandex.ru>2018-11-09 18:14:48 +0300
commite125020d698d5fe69f7820cf0d0731c82afef7a0 (patch)
treec7076ad41575db8bc176e0589f454ecfd49a990a /stm32
parent1ea208daa528b436bdc58d13bf82094c53d308a8 (diff)
Added sample driver for STM32.
Diffstat (limited to 'stm32')
-rw-r--r--stm32/ed25519_driver_sample.c206
1 files changed, 206 insertions, 0 deletions
diff --git a/stm32/ed25519_driver_sample.c b/stm32/ed25519_driver_sample.c
new file mode 100644
index 0000000..1268974
--- /dev/null
+++ b/stm32/ed25519_driver_sample.c
@@ -0,0 +1,206 @@
+//
+// simple driver to test "ed25519" core in hardware
+//
+
+//
+// note, that the test program needs a custom bitstream where
+// the core is located at offset 0 (without the core selector)
+//
+
+// stm32 headers
+
+
+#include "stm-init.h"
+#include "stm-led.h"
+#include "stm-fmc.h"
+
+// locations of core registers
+#define CORE_ADDR_NAME0 (0x00 << 2)
+#define CORE_ADDR_NAME1 (0x01 << 2)
+#define CORE_ADDR_VERSION (0x02 << 2)
+#define CORE_ADDR_CONTROL (0x08 << 2)
+#define CORE_ADDR_STATUS (0x09 << 2)
+
+// locations of data buffers
+#define CORE_ADDR_BUF_K (0x10 << 2)
+#define CORE_ADDR_BUF_QY (0x18 << 2)
+
+// bit maps
+#define CORE_CONTROL_BIT_NEXT 0x00000002
+#define CORE_STATUS_BIT_READY 0x00000002
+
+// 256 bits
+#define OPERAND_WIDTH 256
+
+#include "../../../../user/shatov/curve25519_fpga_model/vectors/ed25519/ed25519_test_vectors_rfc8032.h"
+#include "../../../../user/shatov/curve25519_fpga_model/vectors/ed25519/ed25519_test_vector_randomized.h"
+
+#define BUF_NUM_WORDS (OPERAND_WIDTH / (sizeof(uint32_t) << 3)) // 8
+
+inline uint32_t htonl(uint32_t w)
+{
+ return
+ ((w & 0x000000ff) << 24) +
+ ((w & 0x0000ff00) << 8) +
+ ((w & 0x00ff0000) >> 8) +
+ ((w & 0xff000000) >> 24);
+}
+
+//
+// test vectors
+//
+static const uint32_t ed25519_d1[BUF_NUM_WORDS] = ED25519_D_HASHED_LSB_1;
+static const uint32_t ed25519_d2[BUF_NUM_WORDS] = ED25519_D_HASHED_LSB_2;
+static const uint32_t ed25519_d3[BUF_NUM_WORDS] = ED25519_D_HASHED_LSB_3;
+static const uint32_t ed25519_d4[BUF_NUM_WORDS] = ED25519_D_HASHED_LSB_4;
+static const uint32_t ed25519_d5[BUF_NUM_WORDS] = ED25519_D_HASHED_LSB_5;
+static const uint32_t ed25519_d6[BUF_NUM_WORDS] = ED25519_D_HASHED_LSB_6;
+
+static const uint32_t ed25519_qy1[BUF_NUM_WORDS] = ED25519_Q_Y_1;
+static const uint32_t ed25519_qy2[BUF_NUM_WORDS] = ED25519_Q_Y_2;
+static const uint32_t ed25519_qy3[BUF_NUM_WORDS] = ED25519_Q_Y_3;
+static const uint32_t ed25519_qy4[BUF_NUM_WORDS] = ED25519_Q_Y_4;
+static const uint32_t ed25519_qy5[BUF_NUM_WORDS] = ED25519_Q_Y_5;
+static const uint32_t ed25519_qy6[BUF_NUM_WORDS] = ED25519_Q_Y_6;
+
+
+//
+// prototypes
+//
+void toggle_yellow_led(void);
+int test_ed25519_multiplier(const uint32_t *k,
+ const uint32_t *qy);
+
+//
+// test routine
+//
+int main()
+{
+ int ok;
+
+ stm_init();
+
+ led_on(LED_GREEN);
+ led_off(LED_RED);
+
+ led_off(LED_YELLOW);
+ led_off(LED_BLUE);
+
+ uint32_t core_name0;
+ uint32_t core_name1;
+
+ fmc_read_32(CORE_ADDR_NAME0, &core_name0);
+ fmc_read_32(CORE_ADDR_NAME1, &core_name1);
+
+ // "ed25", "519 "
+
+ if ((core_name0 != 0x65643235) || (core_name1 != 0x35313920)) {
+ led_off(LED_GREEN);
+ led_on(LED_RED);
+ while (1);
+ }
+
+
+ // repeat forever
+ while (1)
+ {
+ ok = 1;
+
+ ok = ok && test_ed25519_multiplier(ed25519_d1, ed25519_qy1);
+ ok = ok && test_ed25519_multiplier(ed25519_d2, ed25519_qy2);
+ ok = ok && test_ed25519_multiplier(ed25519_d3, ed25519_qy3);
+ ok = ok && test_ed25519_multiplier(ed25519_d4, ed25519_qy4);
+ ok = ok && test_ed25519_multiplier(ed25519_d5, ed25519_qy5);
+ ok = ok && test_ed25519_multiplier(ed25519_d6, ed25519_qy6);
+
+ // check
+ if (!ok) {
+ led_off(LED_GREEN);
+ led_on(LED_RED);
+ }
+
+ toggle_yellow_led();
+ }
+}
+
+
+//
+// this routine uses the hardware multiplier to obtain ty, which is the
+// y-coordinate of the scalar multiple of the base point T = k * G,
+// ty is then compared to the value qy (correct result known in advance)
+//
+int test_ed25519_multiplier(const uint32_t *k,
+ const uint32_t *qy)
+{
+ int i, num_cyc;
+ uint32_t reg_control, reg_status;
+ uint32_t k_word, ty_word;
+
+ // fill k
+ for (i=0; i<BUF_NUM_WORDS; i++) {
+ k_word = k[i];
+ fmc_write_32(CORE_ADDR_BUF_K + ((BUF_NUM_WORDS - (i + 1)) * sizeof(uint32_t)), k_word);
+ }
+
+ // as a sanity check, make sure that we can't readout the private
+ // key we've just filled in
+
+ for (i=0; i<BUF_NUM_WORDS; i++) {
+ fmc_read_32(CORE_ADDR_BUF_K + ((BUF_NUM_WORDS - (i + 1)) * sizeof(uint32_t)), &k_word);
+ if (k_word != 0xDEADCE11) return 0;
+ }
+
+ // clear 'next' control bit, then set 'next' control bit again to trigger new operation
+ reg_control = 0;
+ fmc_write_32(CORE_ADDR_CONTROL, reg_control);
+ reg_control = CORE_CONTROL_BIT_NEXT;
+ fmc_write_32(CORE_ADDR_CONTROL, reg_control);
+
+ // wait for 'ready' status bit to be set
+ num_cyc = 0;
+ do {
+ num_cyc++;
+ fmc_read_32(CORE_ADDR_STATUS, &reg_status);
+ }
+ while (!(reg_status & CORE_STATUS_BIT_READY));
+
+ // read back qy word-by-word, then compare to the reference value
+ for (i=0; i<BUF_NUM_WORDS; i++) {
+ fmc_read_32(CORE_ADDR_BUF_QY + (i * sizeof(uint32_t)), &ty_word);
+
+ // match the byte order used in RFC test vectors
+ ty_word = htonl(ty_word);
+
+ // compare
+ if ((ty_word != qy[i]))
+ return 0;
+ }
+
+ // everything went just fine
+ return 1;
+}
+
+//
+// toggle the yellow led to indicate that we're not stuck somewhere
+//
+void toggle_yellow_led(void)
+{
+ static int led_state = 0;
+
+ led_state = !led_state;
+
+ if (led_state) led_on(LED_YELLOW);
+ else led_off(LED_YELLOW);
+}
+
+
+void SysTick_Handler(void)
+{
+ HAL_IncTick();
+ HAL_SYSTICK_IRQHandler();
+}
+
+
+//
+// end of file
+//