//
// simple driver to test "ed25519" core in hardware
//
//
// note, that the test program needs a custom bitstream where
// the core is located at offset 0 (without the core selector)
//
// stm32 headers
#include "stm-init.h"
#include "stm-led.h"
#include "stm-fmc.h"
// locations of core registers
#define CORE_ADDR_NAME0 (0x00 << 2)
#define CORE_ADDR_NAME1 (0x01 << 2)
#define CORE_ADDR_VERSION (0x02 << 2)
#define CORE_ADDR_CONTROL (0x08 << 2)
#define CORE_ADDR_STATUS (0x09 << 2)
// locations of data buffers
#define CORE_ADDR_BUF_K (0x10 << 2)
#define CORE_ADDR_BUF_QY (0x18 << 2)
// bit maps
#define CORE_CONTROL_BIT_NEXT 0x00000002
#define CORE_STATUS_BIT_READY 0x00000002
// 256 bits
#define OPERAND_WIDTH 256
#include "../../../../user/shatov/curve25519_fpga_model/vectors/ed25519/ed25519_test_vectors_rfc8032.h"
#include "../../../../user/shatov/curve25519_fpga_model/vectors/ed25519/ed25519_test_vector_randomized.h"
#define BUF_NUM_WORDS (OPERAND_WIDTH / (sizeof(uint32_t) << 3)) // 8
inline uint32_t htonl(uint32_t w)
{
return
((w & 0x000000ff) << 24) +
((w & 0x0000ff00) << 8) +
((w & 0x00ff0000) >> 8) +
((w & 0xff000000) >> 24);
}
//
// test vectors
//
static const uint32_t ed25519_d1[BUF_NUM_WORDS] = ED25519_D_HASHED_LSB_1;
static const uint32_t ed25519_d2[BUF_NUM_WORDS] = ED25519_D_HASHED_LSB_2;
static const uint32_t ed25519_d3[BUF_NUM_WORDS] = ED25519_D_HASHED_LSB_3;
static const uint32_t ed25519_d4[BUF_NUM_WORDS] = ED25519_D_HASHED_LSB_4;
static const uint32_t ed25519_d5[BUF_NUM_WORDS] = ED25519_D_HASHED_LSB_5;
static const uint32_t ed25519_d6[BUF_NUM_WORDS] = ED25519_D_HASHED_LSB_6;
static const uint32_t ed25519_qy1[BUF_NUM_WORDS] = ED25519_Q_Y_1;
static const uint32_t ed25519_qy2[BUF_NUM_WORDS] = ED25519_Q_Y_2;
static const uint32_t ed25519_qy3[BUF_NUM_WORDS] = ED25519_Q_Y_3;
static const uint32_t ed25519_qy4[BUF_NUM_WORDS] = ED25519_Q_Y_4;
static const uint32_t ed25519_qy5[BUF_NUM_WORDS] = ED25519_Q_Y_5;
static const uint32_t ed25519_qy6[BUF_NUM_WORDS] = ED25519_Q_Y_6;
//
// prototypes
//
void toggle_yellow_led(void);
int test_ed25519_multiplier(const uint32_t *k,
const uint32_t *qy);
//
// test routine
//
int main()
{
int ok;
stm_init();
led_on(LED_GREEN);
led_off(LED_RED);
led_off(LED_YELLOW);
led_off(LED_BLUE);
uint32_t core_name0;
uint32_t core_name1;
fmc_read_32(CORE_ADDR_NAME0, &core_name0);
fmc_read_32(CORE_ADDR_NAME1, &core_name1);
// "ed25", "519 "
if ((core_name0 != 0x65643235) || (core_name1 != 0x35313920)) {
led_off(LED_GREEN);
led_on(LED_RED);
while (1);
}
// repeat forever
while (1)
{
ok = 1;
ok = ok && test_ed25519_multiplier(ed25519_d1, ed25519_qy1);
ok = ok && test_ed25519_multiplier(ed25519_d2, ed25519_qy2);
ok = ok && test_ed25519_multiplier(ed25519_d3, ed25519_qy3);
ok = ok && test_ed25519_multiplier(ed25519_d4, ed25519_qy4);
ok = ok && test_ed25519_multiplier(ed25519_d5, ed25519_qy5);
ok = ok && test_ed25519_multiplier(ed25519_d6, ed25519_qy6);
// check
if (!ok) {
led_off(LED_GREEN);
led_on(LED_RED);
}
toggle_yellow_led();
}
}
//
// this routine uses the hardware multiplier to obtain ty, which is the
// y-coordinate of the scalar multiple of the base point T = k * G,
// ty is then compared to the value qy (correct result known in advance)
//
int test_ed25519_multiplier(const uint32_t *k,
const uint32_t *qy)
{
int i, num_cyc;
uint32_t reg_control, reg_status;
uint32_t k_word, ty_word;
// fill k
for (i=0; i<BUF_NUM_WORDS; i++) {
k_word = k[i];
fmc_write_32(CORE_ADDR_BUF_K + ((BUF_NUM_WORDS - (i + 1)) * sizeof(uint32_t)), k_word);
}
// as a sanity check, make sure that we can't readout the private
// key we've just filled in
for (i=0; i<BUF_NUM_WORDS; i++) {
fmc_read_32(CORE_ADDR_BUF_K + ((BUF_NUM_WORDS - (i + 1)) * sizeof(uint32_t)), &k_word);
if (k_word != 0xDEADCE11) return 0;
}
// clear 'next' control bit, then set 'next' control bit again to trigger new operation
reg_control = 0;
fmc_write_32(CORE_ADDR_CONTROL, reg_control);
reg_control = CORE_CONTROL_BIT_NEXT;
fmc_write_32(CORE_ADDR_CONTROL, reg_control);
// wait for 'ready' status bit to be set
num_cyc = 0;
do {
num_cyc++;
fmc_read_32(CORE_ADDR_STATUS, ®_status);
}
while (!(reg_status & CORE_STATUS_BIT_READY));
// read back qy word-by-word, then compare to the reference value
for (i=0; i<BUF_NUM_WORDS; i++) {
fmc_read_32(CORE_ADDR_BUF_QY + (i * sizeof(uint32_t)), &ty_word);
// match the byte order used in RFC test vectors
ty_word = htonl(ty_word);
// compare
if ((ty_word != qy[i]))
return 0;
}
// everything went just fine
return 1;
}
//
// toggle the yellow led to indicate that we're not stuck somewhere
//
void toggle_yellow_led(void)
{
static int led_state = 0;
led_state = !led_state;
if (led_state) led_on(LED_YELLOW);
else led_off(LED_YELLOW);
}
void SysTick_Handler(void)
{
HAL_IncTick();
HAL_SYSTICK_IRQHandler();
}
//
// end of file
//