//------------------------------------------------------------------------------
//
// tb_curve_doubler_384.v
// -----------------------------------------------------------------------------
// Testbench for 384-bit curve point doubler.
//
// Authors: Pavel Shatov
//
// Copyright (c) 2016, NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
`timescale 1ns / 1ps
//------------------------------------------------------------------------------
module tb_curve_doubler_384;
//
// Test Vectors
//
localparam [383:0] PX_1 = 384'haa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7;
localparam [383:0] PY_1 = 384'h3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f;
localparam [383:0] PZ_1 = 384'h000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001;
localparam [383:0] RX_1 = 384'he50dbe0981ef5f4f52eebd29e34e6d18d279318fe6b5d5616c54c93ea906c671b223d61ab7ba23cd59ab4f6ec5e40b94;
localparam [383:0] RY_1 = 384'h5b939b5a52ac7ebed90b8c1a809fb3a5c068b421b9e0a16208c2e53b1fe41e8373333e360ad2205e9dd63d29f1e0757a;
localparam [383:0] RZ_1 = 384'h6c2fbc952c4c58debb3d317f2525b853f1e83b7a513428f9d3b462276be1718014c1639c3afd033af4863af921d41cbe;
localparam [383:0] PX_2 = 384'heea14dc6c53e682b16c979fcbf2b39c0f5c43efa5b412f3e9bec8251a5ff9e243f46c6ba91a1604abdd5028b56e60334;
localparam [383:0] PY_2 = 384'h7ff6e6e9ed8da4aea5baa06d3a9583b6a3f206e935566659cd2025202a9e2a62e0c44e603f3a4304bfa974470f53f646;
localparam [383:0] PZ_2 = 384'hcb16156bf82550274e39900f2ed4359794160a166257ae2c71c6503c129b6ce92f31277387aa1c538e7702e3658a883d;
localparam [383:0] RX_2 = 384'h9455050d6d00285ae2cd25c95372b30d321fb31899f7b0e6f3b4dd557d3465edbc500cc403b076c7534a07a48d87824d;
localparam [383:0] RY_2 = 384'hd0cc7a7eb6fbe9cd962efa82f89b701fbd1f8a3579066feda96c9124ee3ef2764d923a2c0039e06865442dbf3ed460ae;
localparam [383:0] RZ_2 = 384'h473d297a1e5ed8b7afd51a27d5d933ab4555414ef75e1104c1fb56ba9b110f5d0d63a79e8e12edc4432c37663cc828f2;
localparam [383:0] PX_3 = 384'h4af343df7a804f6b345562a471c4cea419f5e87086eaba95b7a7fa43aeb24a357d22047eea55c529fcdfb44ea80d3aab;
localparam [383:0] PY_3 = 384'hfa3e2ceb637c90fde564039da3e256456a8d0995c2f69846bf3e22f2f0760a2df00f2df2f79ce2484ed5b26124d733f1;
localparam [383:0] PZ_3 = 384'hdf144e3659137591d09ba17e7045f74c477e4f27e0f6c602f11306def2abeae08aee53fa40e3ca3b3ca52f9eaae47720;
localparam [383:0] RX_3 = 384'h9e2aad0ad19c585e03af779d1205a3a98bf7d367c0c829f741161983dc0d24d222d5d9c2ae39399ff40d4974df22ce4d;
localparam [383:0] RY_3 = 384'he0e40da86ae320396c813bb891f31f3d59be8c4957c602b56b5aa976e47d128127625b1ce7470fa33ed9e57eca5a268d;
localparam [383:0] RZ_3 = 384'h836e9d9117ba665abbee7063599a8631cd42f685a8bc29b05895c2928c19f640a065cfd2cc5b0d607ea52e388be513cf;
localparam [383:0] PX_4 = 384'hxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx;
localparam [383:0] PY_4 = 384'hxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx;
localparam [383:0] PZ_4 = 384'h000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000;
localparam [383:0] RX_4 = 384'h000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001;
localparam [383:0] RY_4 = 384'h000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001;
localparam [383:0] RZ_4 = 384'h000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000;
localparam [383:0] Q = 384'hfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff;
//
// TODO: Test special cases!
//
//
// Core Parameters
//
localparam WORD_COUNTER_WIDTH = 4;
localparam OPERAND_NUM_WORDS = 12;
//
// Clock (100 MHz)
//
reg clk = 1'b0;
always #5 clk = ~clk;
//
// Inputs, Outputs
//
reg rst_n;
reg ena;
wire rdy;
//
// Buffers (PX, PY, PZ, RX, RY, RZ, Q)
//
wire [WORD_COUNTER_WIDTH-1:0] core_px_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_py_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_pz_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_rx_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_ry_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_rz_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_q_addr;
wire core_rx_wren;
wire core_ry_wren;
wire core_rz_wren;
wire [ 32-1:0] core_px_data;
wire [ 32-1:0] core_py_data;
wire [ 32-1:0] core_pz_data;
wire [ 32-1:0] core_rx_data_wr;
wire [ 32-1:0] core_ry_data_wr;
wire [ 32-1:0] core_rz_data_wr;
wire [ 32-1:0] core_rx_data_rd;
wire [ 32-1:0] core_ry_data_rd;
wire [ 32-1:0] core_rz_data_rd;
wire [ 32-1:0] core_q_data;
reg [WORD_COUNTER_WIDTH-1:0] tb_xyzq_addr;
reg tb_xyzq_wren;
reg [ 31:0] tb_px_data;
reg [ 31:0] tb_py_data;
reg [ 31:0] tb_pz_data;
wire [ 31:0] tb_rx_data;
wire [ 31:0] tb_ry_data;
wire [ 31:0] tb_rz_data;
reg [ 31:0] tb_q_data;
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_px
( .clk(clk),
.a_addr(tb_xyzq_addr), .a_wr(tb_xyzq_wren), .a_in(tb_px_data), .a_out(),
.b_addr(core_px_addr), .b_out(core_px_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_py
( .clk(clk),
.a_addr(tb_xyzq_addr), .a_wr(tb_xyzq_wren), .a_in(tb_py_data), .a_out(),
.b_addr(core_py_addr), .b_out(core_py_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_pz
( .clk(clk),
.a_addr(tb_xyzq_addr), .a_wr(tb_xyzq_wren), .a_in(tb_pz_data), .a_out(),
.b_addr(core_pz_addr), .b_out(core_pz_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_q
( .clk(clk),
.a_addr(tb_xyzq_addr), .a_wr(tb_xyzq_wren), .a_in(tb_q_data), .a_out(),
.b_addr(core_q_addr), .b_out(core_q_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_rx
( .clk(clk),
.a_addr(core_rx_addr), .a_wr(core_rx_wren), .a_in(core_rx_data_wr), .a_out(core_rx_data_rd),
.b_addr(tb_xyzq_addr), .b_out(tb_rx_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_ry
( .clk(clk),
.a_addr(core_ry_addr), .a_wr(core_ry_wren), .a_in(core_ry_data_wr), .a_out(core_ry_data_rd),
.b_addr(tb_xyzq_addr), .b_out(tb_ry_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_rz
( .clk(clk),
.a_addr(core_rz_addr), .a_wr(core_rz_wren), .a_in(core_rz_data_wr), .a_out(core_rz_data_rd),
.b_addr(tb_xyzq_addr), .b_out(tb_rz_data)
);
//
// Opcode
//
wire [ 5: 0] dbl_uop_addr;
wire [19: 0] dbl_uop;
uop_dbl_rom dbl_rom
(
.clk (clk),
.addr (dbl_uop_addr),
.data (dbl_uop)
);
//
// UUT
//
curve_dbl_add_384 uut
(
.clk (clk),
.rst_n (rst_n),
.ena (ena),
.rdy (rdy),
.uop_addr (dbl_uop_addr),
.uop (dbl_uop),
.px_addr (core_px_addr),
.py_addr (core_py_addr),
.pz_addr (core_pz_addr),
.rx_addr (core_rx_addr),
.ry_addr (core_ry_addr),
.rz_addr (core_rz_addr),
.q_addr (core_q_addr),
.rx_wren (core_rx_wren),
.ry_wren (core_ry_wren),
.rz_wren (core_rz_wren),
.px_din (core_px_data),
.py_din (core_py_data),
.pz_din (core_pz_data),
.rx_din (core_rx_data_rd),
.ry_din (core_ry_data_rd),
.rz_din (core_rz_data_rd),
.rx_dout (core_rx_data_wr),
.ry_dout (core_ry_data_wr),
.rz_dout (core_rz_data_wr),
.q_din (core_q_data)
);
//
// Testbench Routine
//
reg ok = 1;
initial begin
/* initialize control inputs */
rst_n = 0;
ena = 0;
/* wait for some time */
#200;
/* de-assert reset */
rst_n = 1;
/* wait for some time */
#100;
/* run tests */
test_curve_doubler(PX_1, PY_1, PZ_1, RX_1, RY_1, RZ_1);
test_curve_doubler(PX_2, PY_2, PZ_2, RX_2, RY_2, RZ_2);
test_curve_doubler(PX_3, PY_3, PZ_3, RX_3, RY_3, RZ_3);
test_curve_doubler(PX_4, PY_4, PZ_4, RX_4, RY_4, RZ_4);
/* print result */
if (ok) $display("tb_curve_doubler_384: SUCCESS");
else $display("tb_curve_doubler_384: FAILURE");
//
// $finish;
//
end
//
// Test Task
//
reg t_ok;
integer w;
task test_curve_doubler;
input [383:0] px;
input [383:0] py;
input [383:0] pz;
input [383:0] rx;
input [383:0] ry;
input [383:0] rz;
reg [383:0] px_shreg;
reg [383:0] py_shreg;
reg [383:0] pz_shreg;
reg [383:0] rx_shreg;
reg [383:0] ry_shreg;
reg [383:0] rz_shreg;
reg [383:0] q_shreg;
begin
/* start filling memories */
tb_xyzq_wren = 1;
/* initialize shift registers */
px_shreg = px;
py_shreg = py;
pz_shreg = pz;
q_shreg = Q;
/* write all the words */
for (w=0; w<OPERAND_NUM_WORDS; w=w+1) begin
/* set addresses */
tb_xyzq_addr = w[WORD_COUNTER_WIDTH-1:0];
/* set data words */
tb_px_data = px_shreg[31:0];
tb_py_data = py_shreg[31:0];
tb_pz_data = pz_shreg[31:0];
tb_q_data = q_shreg[31:0];
/* shift inputs */
px_shreg = {{32{1'bX}}, px_shreg[383:32]};
py_shreg = {{32{1'bX}}, py_shreg[383:32]};
pz_shreg = {{32{1'bX}}, pz_shreg[383:32]};
q_shreg = {{32{1'bX}}, q_shreg[383:32]};
/* wait for 1 clock tick */
#10;
end
/* wipe addresses */
tb_xyzq_addr = {WORD_COUNTER_WIDTH{1'bX}};
/* wipe data words */
tb_px_data = {32{1'bX}};
tb_py_data = {32{1'bX}};
tb_pz_data = {32{1'bX}};
tb_q_data = {32{1'bX}};
/* stop filling memories */
tb_xyzq_wren = 0;
/* start operation */
ena = 1;
/* clear flag */
#10 ena = 0;
/* wait for operation to complete */
while (!rdy) #10;
/* read result */
for (w=0; w<OPERAND_NUM_WORDS; w=w+1) begin
/* set address */
tb_xyzq_addr = w[WORD_COUNTER_WIDTH-1:0];
/* wait for 1 clock tick */
#10;
/* store data word */
rx_shreg = {tb_rx_data, rx_shreg[383:32]};
ry_shreg = {tb_ry_data, ry_shreg[383:32]};
rz_shreg = {tb_rz_data, rz_shreg[383:32]};
end
/* compare */
t_ok = (rx_shreg == rx) &&
(ry_shreg == ry) &&
(rz_shreg == rz);
/* display results */
$display("test_curve_doubler(): %s", t_ok ? "OK" : "ERROR");
/* update global flag */
ok = ok && t_ok;
end
endtask
endmodule
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------