//------------------------------------------------------------------------------
//
// tb_point_multiplier_256.v
// -----------------------------------------------------------------------------
// Testbench for P-256 point scalar multiplier.
//
// Authors: Pavel Shatov
//
// Copyright (c) 2018, NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
`timescale 1ns / 1ps
//------------------------------------------------------------------------------
module tb_point_multiplier_256;
//
// Test Vectors
//
`include "../../../user/shatov/ecdh_fpga_model/test_vectors/ecdh_test_vectors.v"
//
// Core Parameters
//
localparam WORD_COUNTER_WIDTH = 3;
localparam OPERAND_NUM_WORDS = 8;
//
// Clock (100 MHz)
//
reg clk = 1'b0;
always #5 clk = ~clk;
//
// Inputs, Outputs
//
reg rst_n;
reg ena;
wire rdy;
//
// Buffers (K, PX, PY, QX, QY)
//
wire [WORD_COUNTER_WIDTH-1:0] core_k_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_px_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_py_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_qx_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_qy_addr;
wire core_qx_wren;
wire core_qy_wren;
wire [ 32-1:0] core_k_data;
wire [ 32-1:0] core_px_data;
wire [ 32-1:0] core_py_data;
wire [ 32-1:0] core_qx_data;
wire [ 32-1:0] core_qy_data;
reg [WORD_COUNTER_WIDTH-1:0] tb_k_addr;
reg [WORD_COUNTER_WIDTH-1:0] tb_pxy_addr;
reg [WORD_COUNTER_WIDTH-1:0] tb_qxy_addr;
reg tb_k_wren;
reg tb_pxy_wren;
reg [ 31:0] tb_k_data;
reg [ 31:0] tb_px_data;
reg [ 31:0] tb_py_data;
wire [ 31:0] tb_qx_data;
wire [ 31:0] tb_qy_data;
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_k
( .clk(clk),
.a_addr(tb_k_addr), .a_wr(tb_k_wren), .a_in(tb_k_data), .a_out(),
.b_addr(core_k_addr), .b_out(core_k_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_px
( .clk(clk),
.a_addr(tb_pxy_addr), .a_wr(tb_pxy_wren), .a_in(tb_px_data), .a_out(),
.b_addr(core_px_addr), .b_out(core_px_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_py
( .clk(clk),
.a_addr(tb_pxy_addr), .a_wr(tb_pxy_wren), .a_in(tb_py_data), .a_out(),
.b_addr(core_py_addr), .b_out(core_py_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_qx
( .clk(clk),
.a_addr(core_qx_addr), .a_wr(core_qx_wren), .a_in(core_qx_data), .a_out(),
.b_addr(tb_qxy_addr), .b_out(tb_qx_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_qy
( .clk(clk),
.a_addr(core_qy_addr), .a_wr(core_qy_wren), .a_in(core_qy_data), .a_out(),
.b_addr(tb_qxy_addr), .b_out(tb_qy_data)
);
//
// UUT
//
point_mul_256 uut
(
.clk (clk),
.rst_n (rst_n),
.ena (ena),
.rdy (rdy),
.k_addr (core_k_addr),
.qx_addr (core_px_addr),
.qy_addr (core_py_addr),
.rx_addr (core_qx_addr),
.ry_addr (core_qy_addr),
.rx_wren (core_qx_wren),
.ry_wren (core_qy_wren),
.k_din (core_k_data),
.qx_din (core_px_data),
.qy_din (core_py_data),
.rx_dout (core_qx_data),
.ry_dout (core_qy_data)
);
//
// Testbench Routine
//
reg ok = 1;
initial begin
/* initialize control inputs */
rst_n = 0;
ena = 0;
/* wait for some time */
#200;
/* de-assert reset */
rst_n = 1;
/* wait for some time */
#100;
/* run tests */
$display(" 1. H = 2 * G...");
test_point_multiplier(256'd2, P_256_G_X, P_256_G_Y, P_256_H_X, P_256_H_Y);
$display(" 2. H = (n + 2) * G...");
test_point_multiplier(P_256_N + 256'd2, P_256_G_X, P_256_G_Y, P_256_H_X, P_256_H_Y);
$display(" 3. QA = dA * G...");
test_point_multiplier(P_256_DA, P_256_G_X, P_256_G_Y, P_256_QA_X, P_256_QA_Y);
$display(" 4. QB = dB * G...");
test_point_multiplier(P_256_DB, P_256_G_X, P_256_G_Y, P_256_QB_X, P_256_QB_Y);
$display(" 5. S = dB * QA...");
test_point_multiplier(P_256_DB, P_256_QA_X, P_256_QA_Y, P_256_S_X, P_256_S_Y);
$display(" 6. S = dA * QB...");
test_point_multiplier(P_256_DA, P_256_QB_X, P_256_QB_Y, P_256_S_X, P_256_S_Y);
$display(" 7. QA2 = 2 * QA...");
test_point_multiplier(256'd2, P_256_QA_X, P_256_QA_Y, P_256_QA2_X, P_256_QA2_Y);
$display(" 8. QA2 = (n + 2) * QA...");
test_point_multiplier(P_256_N + 256'd2, P_256_QA_X, P_256_QA_Y, P_256_QA2_X, P_256_QA2_Y);
$display(" 9. QB2 = 2 * QB...");
test_point_multiplier(256'd2, P_256_QB_X, P_256_QB_Y, P_256_QB2_X, P_256_QB2_Y);
$display("10. QB2 = (n + 2) * QB...");
test_point_multiplier(P_256_N + 256'd2, P_256_QB_X, P_256_QB_Y, P_256_QB2_X, P_256_QB2_Y);
/* print result */
if (ok) $display("tb_point_multiplier_256: SUCCESS");
else $display("tb_point_multiplier_256: FAILURE");
//
//$finish;
//
end
//
// Test Task
//
reg q_ok;
integer w;
task test_point_multiplier;
input [255:0] k;
input [255:0] px;
input [255:0] py;
input [255:0] qx;
input [255:0] qy;
reg [255:0] k_shreg;
reg [255:0] px_shreg;
reg [255:0] py_shreg;
reg [255:0] qx_shreg;
reg [255:0] qy_shreg;
begin
/* start filling memories */
tb_k_wren = 1;
tb_pxy_wren = 1;
/* initialize shift registers */
k_shreg = k;
px_shreg = px;
py_shreg = py;
/* write all the words */
for (w=0; w<OPERAND_NUM_WORDS; w=w+1) begin
/* set addresses */
tb_k_addr = w[WORD_COUNTER_WIDTH-1:0];
tb_pxy_addr = w[WORD_COUNTER_WIDTH-1:0];
/* set data words */
tb_k_data = k_shreg[31:0];
tb_px_data = px_shreg[31:0];
tb_py_data = py_shreg[31:0];
/* shift inputs */
k_shreg = {{32{1'bX}}, k_shreg[255:32]};
px_shreg = {{32{1'bX}}, px_shreg[255:32]};
py_shreg = {{32{1'bX}}, py_shreg[255:32]};
/* wait for 1 clock tick */
#10;
end
/* wipe addresses */
tb_k_addr = {WORD_COUNTER_WIDTH{1'bX}};
tb_pxy_addr = {WORD_COUNTER_WIDTH{1'bX}};
/* wipe data words */
tb_k_data = {32{1'bX}};
tb_px_data = {32{1'bX}};
tb_py_data = {32{1'bX}};
/* stop filling memories */
tb_k_wren = 0;
tb_pxy_wren = 0;
/* start operation */
ena = 1;
/* clear flag */
#10 ena = 0;
/* wait for operation to complete */
while (!rdy) #10;
/* read result */
for (w=0; w<OPERAND_NUM_WORDS; w=w+1) begin
/* set address */
tb_qxy_addr = w[WORD_COUNTER_WIDTH-1:0];
/* wait for 1 clock tick */
#10;
/* store data word */
qx_shreg = {tb_qx_data, qx_shreg[255:32]};
qy_shreg = {tb_qy_data, qy_shreg[255:32]};
end
/* compare */
q_ok = (qx_shreg == qx) &&
(qy_shreg == qy);
/* display results */
$display("test_point_multiplier(): %s", q_ok ? "OK" : "ERROR");
/* update global flag */
ok = ok && q_ok;
end
endtask
endmodule
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------