1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
|
//======================================================================
//
// modexpa7_systolic_multiplier.v
// -----------------------------------------------------------------------------
// Systolic Montgomery multiplier.
//
// Authors: Pavel Shatov
//
// Copyright (c) 2017, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module modexpa7_systolic_multiplier #
(
//
// This sets the address widths of memory buffers. Internal data
// width is 32 bits, so for e.g. 2048-bit operands buffers must store
// 2048 / 32 = 64 words, and these need 5-bit address bus, because
// 2 ** 6 = 64.
//
parameter OPERAND_ADDR_WIDTH = 4,
//
// Explain.
//
parameter SYSTOLIC_ARRAY_POWER = 2
)
(
input clk,
input rst_n,
input ena,
output rdy,
output [OPERAND_ADDR_WIDTH-1:0] a_bram_addr,
output [OPERAND_ADDR_WIDTH-1:0] b_bram_addr,
output [OPERAND_ADDR_WIDTH-1:0] n_bram_addr,
output [OPERAND_ADDR_WIDTH-1:0] n_coeff_bram_addr,
output [OPERAND_ADDR_WIDTH-1:0] r_bram_addr,
input [ 32-1:0] a_bram_out,
input [ 32-1:0] b_bram_out,
input [ 32-1:0] n_bram_out,
input [ 32-1:0] n_coeff_bram_out,
output [ 32-1:0] r_bram_in,
output r_bram_wr,
input [OPERAND_ADDR_WIDTH-1:0] ab_num_words
);
//
// Include Settings
//
`include "pe/modexpa7_primitive_switch.v"
`include "modexpa7_settings.v"
//
// FSM Declaration
//
localparam [ 7: 0] FSM_STATE_IDLE = 8'h00;
localparam [ 7: 0] FSM_STATE_LOAD_B_START = 8'h11;
localparam [ 7: 0] FSM_STATE_LOAD_B_SHIFT = 8'h12;
localparam [ 7: 0] FSM_STATE_LOAD_B_WRITE = 8'h13;
localparam [ 7: 0] FSM_STATE_LOAD_B_FINAL = 8'h14;
localparam [ 7: 0] FSM_STATE_LOAD_N_COEFF_START = 8'h21;
localparam [ 7: 0] FSM_STATE_LOAD_N_COEFF_SHIFT = 8'h22;
localparam [ 7: 0] FSM_STATE_LOAD_N_COEFF_WRITE = 8'h23;
localparam [ 7: 0] FSM_STATE_LOAD_N_COEFF_FINAL = 8'h24;
localparam [ 7: 0] FSM_STATE_LOAD_N_START = 8'h31;
localparam [ 7: 0] FSM_STATE_LOAD_N_SHIFT = 8'h32;
localparam [ 7: 0] FSM_STATE_LOAD_N_WRITE = 8'h33;
localparam [ 7: 0] FSM_STATE_LOAD_N_FINAL = 8'h34;
localparam [ 7: 0] FSM_STATE_MULT_A_B_START = 8'h41;
localparam [ 7: 0] FSM_STATE_MULT_A_B_CRUNCH = 8'h42;
localparam [ 7: 0] FSM_STATE_MULT_A_B_RELOAD = 8'h43;
localparam [ 7: 0] FSM_STATE_MULT_A_B_FINAL = 8'h44;
localparam [ 7: 0] FSM_STATE_MULT_AB_N_COEFF_START = 8'h51;
localparam [ 7: 0] FSM_STATE_MULT_AB_N_COEFF_CRUNCH = 8'h52;
localparam [ 7: 0] FSM_STATE_MULT_AB_N_COEFF_RELOAD = 8'h53;
localparam [ 7: 0] FSM_STATE_MULT_AB_N_COEFF_FINAL = 8'h54;
localparam [ 7: 0] FSM_STATE_MULT_Q_N_START = 8'h61;
localparam [ 7: 0] FSM_STATE_MULT_Q_N_CRUNCH = 8'h62;
localparam [ 7: 0] FSM_STATE_MULT_Q_N_RELOAD = 8'h63;
localparam [ 7: 0] FSM_STATE_MULT_Q_N_FINAL = 8'h64;
localparam [ 7: 0] FSM_STATE_SAVE_START = 8'h71;
localparam [ 7: 0] FSM_STATE_SAVE_WRITE = 8'h72;
localparam [ 7: 0] FSM_STATE_SAVE_FINAL = 8'h73;
localparam [ 7: 0] FSM_STATE_STOP = 8'hFF;
//
// FSM State / Next State
//
reg [ 7: 0] fsm_state = FSM_STATE_IDLE;
reg [ 7: 0] fsm_next_state;
//
// Enable Delay and Trigger
//
reg ena_dly = 1'b0;
/* delay enable by one clock cycle */
always @(posedge clk) ena_dly <= ena;
/* trigger new operation when enable goes high */
wire ena_trig = ena && !ena_dly;
//
// Ready Flag Logic
//
reg rdy_reg = 1'b1;
assign rdy = rdy_reg;
always @(posedge clk or negedge rst_n)
/* reset flag */
if (rst_n == 1'b0) rdy_reg <= 1'b1;
else begin
/* clear flag when operation is started */
if (fsm_state == FSM_STATE_IDLE) rdy_reg <= ~ena_trig;
/* set flag after operation is finished */
if (fsm_state == FSM_STATE_STOP) rdy_reg <= 1'b1;
end
//
// Parameters Latch
//
reg [OPERAND_ADDR_WIDTH-1:0] ab_num_words_latch;
/* save number of words in a and b when new operation starts */
always @(posedge clk)
//
if (fsm_next_state == FSM_STATE_LOAD_B_START)
ab_num_words_latch <= ab_num_words;
//
// Systolic Cycle Counters
//
/* handy values */
wire [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_zero = {SYSTOLIC_CNTR_WIDTH{1'b0}};
wire [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_last = ab_num_words_latch[OPERAND_ADDR_WIDTH-1:SYSTOLIC_ARRAY_POWER];
/* counters */
reg [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_init;
reg [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_load;
reg [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_unload;
/* handy increment values */
wire [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_init_next = syst_cnt_init + 1'b1;
wire [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_load_next = syst_cnt_load + 1'b1;
wire [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_unload_next = syst_cnt_unload + 1'b1;
/* handy stop flags */
wire syst_cnt_init_done = (syst_cnt_init == syst_cnt_last) ? 1'b1 : 1'b0;
wire syst_cnt_load_done = (syst_cnt_load == syst_cnt_last) ? 1'b1 : 1'b0;
wire syst_cnt_unload_done = (syst_cnt_unload == syst_cnt_last) ? 1'b1 : 1'b0;
/* delayed load counter */
reg [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_load_dly;
always @(posedge clk) syst_cnt_load_dly <= syst_cnt_load;
//
// Multiplier Iteration Counter
//
/* handy values */
wire [SYSTOLIC_ARRAY_POWER-1:0] mult_cnt_zero = {SYSTOLIC_ARRAY_POWER{1'b0}};
wire [SYSTOLIC_ARRAY_POWER-1:0] mult_cnt_last = {SYSTOLIC_ARRAY_POWER{1'b1}};
/* counter */
reg [SYSTOLIC_ARRAY_POWER-1:0] mult_cnt;
/* handy increment value and stop flag */
wire [SYSTOLIC_ARRAY_POWER-1:0] mult_cnt_next = mult_cnt + 1'b1;
wire mult_cnt_done = (mult_cnt == mult_cnt_last) ? 1'b1 : 1'b0;
//
// Initialization Counter Control Logic
//
always @(posedge clk) begin
//
case (fsm_state)
FSM_STATE_LOAD_B_START,
FSM_STATE_LOAD_N_COEFF_START,
FSM_STATE_LOAD_N_START: mult_cnt <= mult_cnt_zero;
FSM_STATE_LOAD_B_SHIFT,
FSM_STATE_LOAD_N_COEFF_SHIFT,
FSM_STATE_LOAD_N_SHIFT: mult_cnt <= mult_cnt_next;
endcase
//
case (fsm_state)
FSM_STATE_LOAD_B_START,
FSM_STATE_LOAD_N_COEFF_START,
FSM_STATE_LOAD_N_START: syst_cnt_init <= syst_cnt_zero;
FSM_STATE_LOAD_B_WRITE,
FSM_STATE_LOAD_N_COEFF_WRITE,
FSM_STATE_LOAD_N_WRITE: syst_cnt_init <= !syst_cnt_init_done ? syst_cnt_init_next : syst_cnt_init;
endcase
//
end
//
// Operand Loader
//
/*
* Explain how parallelized loader works here...
*
*/
/* loader banks */
localparam [ 1: 0] LOADER_ADDR_MSB_B = 2'd0;
localparam [ 1: 0] LOADER_ADDR_MSB_N_COEFF = 2'd1;
localparam [ 1: 0] LOADER_ADDR_MSB_N = 2'd2;
/* loader input */
reg [ 2-1:0] loader_addr_msb[0:SYSTOLIC_ARRAY_LENGTH-1];
reg [SYSTOLIC_CNTR_WIDTH-1:0] loader_addr_lsb[0:SYSTOLIC_ARRAY_LENGTH-1];
reg loader_wren [0:SYSTOLIC_ARRAY_LENGTH-1];
reg [ 32-1:0] loader_din [0:SYSTOLIC_ARRAY_LENGTH-1];
/* loader output */
wire [ 32-1:0] loader_dout [0:SYSTOLIC_ARRAY_LENGTH-1];
/* generate parallelized loader */
//
// Loader currently stores B, N_COEFF and N, it can be coded another way
// to initially store B, then AB, then Q. Some memory can be saved thay way.
// Maybe later...
//
genvar i;
generate for (i=0; i<SYSTOLIC_ARRAY_LENGTH; i=i+1)
//
begin : gen_bram_1rw_readfirst_loader
//
bram_1rw_readfirst #
(
.MEM_WIDTH (32),
.MEM_ADDR_BITS (SYSTOLIC_CNTR_WIDTH + 2)
)
bram_loader
(
.clk (clk),
.a_addr ({loader_addr_msb[i], loader_addr_lsb[i]}),
.a_wr (loader_wren[i]),
.a_in (loader_din[i]),
.a_out (loader_dout[i])
);
//
end
//
endgenerate
//
// Block Memory Addresses
//
/*
* Explain why there are two memory sizes.
*
*/
/* the very first addresses */
wire [OPERAND_ADDR_WIDTH-1:0] bram_addr_zero = { {OPERAND_ADDR_WIDTH{1'b0}}};
wire [OPERAND_ADDR_WIDTH :0] bram_addr_ext_zero = {1'b0, {OPERAND_ADDR_WIDTH{1'b0}}};
/* the very last addresses */
wire [OPERAND_ADDR_WIDTH-1:0] bram_addr_last = {ab_num_words_latch};
wire [OPERAND_ADDR_WIDTH :0] bram_addr_ext_last = {ab_num_words_latch, 1'b1};
/* address registers */
reg [OPERAND_ADDR_WIDTH-1:0] a_addr;
reg [OPERAND_ADDR_WIDTH-1:0] b_addr;
reg [OPERAND_ADDR_WIDTH-1:0] n_coeff_addr;
reg [OPERAND_ADDR_WIDTH-1:0] n_addr;
reg [OPERAND_ADDR_WIDTH :0] ab_addr_ext;
reg [OPERAND_ADDR_WIDTH-1:0] q_addr;
reg [OPERAND_ADDR_WIDTH :0] qn_addr_ext;
reg [OPERAND_ADDR_WIDTH-1:0] s_addr;
reg [OPERAND_ADDR_WIDTH-1:0] sn_addr;
reg [OPERAND_ADDR_WIDTH-1:0] r_addr;
/* handy increment values */
wire [OPERAND_ADDR_WIDTH-1:0] a_addr_next = a_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] b_addr_next = b_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] n_coeff_addr_next = n_coeff_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] n_addr_next = n_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH :0] ab_addr_ext_next = ab_addr_ext + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] q_addr_next = q_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH :0] qn_addr_ext_next = qn_addr_ext + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] s_addr_next = s_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] sn_addr_next = sn_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] r_addr_next = r_addr + 1'b1;
/* handy stop flags */
wire a_addr_done = (a_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire b_addr_done = (b_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire n_coeff_addr_done = (n_coeff_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire n_addr_done = (n_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire ab_addr_ext_done = (ab_addr_ext == bram_addr_ext_last) ? 1'b1 : 1'b0;
wire q_addr_done = (q_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire qn_addr_ext_done = (qn_addr_ext == bram_addr_ext_last) ? 1'b1 : 1'b0;
wire s_addr_done = (s_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire sn_addr_done = (sn_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire r_addr_done = (r_addr == bram_addr_last) ? 1'b1 : 1'b0;
/* delayed B address */
reg [OPERAND_ADDR_WIDTH-1:0] b_addr_dly;
always @(posedge clk) b_addr_dly <= b_addr;
reg [OPERAND_ADDR_WIDTH-1:0] n_coeff_addr_dly;
always @(posedge clk) n_coeff_addr_dly <= n_coeff_addr;
reg [OPERAND_ADDR_WIDTH-1:0] n_addr_dly;
always @(posedge clk) n_addr_dly <= n_addr;
/* map registers to top-level ports */
assign a_bram_addr = a_addr;
assign b_bram_addr = b_addr;
assign n_coeff_bram_addr = n_coeff_addr;
assign n_bram_addr = n_addr;
assign r_bram_addr = r_addr;
//
// Flag
//
reg flag_select_s;
//
// Memory Address Control Logic
//
always @(posedge clk) begin
//
case (fsm_next_state)
FSM_STATE_LOAD_B_START: b_addr <= bram_addr_zero;
FSM_STATE_LOAD_N_COEFF_START: n_coeff_addr <= bram_addr_zero;
FSM_STATE_LOAD_N_START: n_addr <= bram_addr_zero;
FSM_STATE_LOAD_B_SHIFT: b_addr <= b_addr_next;
FSM_STATE_LOAD_N_COEFF_SHIFT: n_coeff_addr <= n_coeff_addr_next;
FSM_STATE_LOAD_N_SHIFT: n_addr <= n_addr_next;
endcase
//
case (fsm_state)
FSM_STATE_MULT_Q_N_RELOAD:
if (qn_addr_ext == {1'b0, bram_addr_last})
n_addr <= bram_addr_zero;
else if (qn_addr_ext > {1'b0, bram_addr_last})
n_addr <= n_addr_next;
endcase
//
case (fsm_state)
FSM_STATE_SAVE_START: r_addr <= bram_addr_zero;
FSM_STATE_SAVE_WRITE: r_addr <= r_addr_next;
endcase
//
case (fsm_next_state)
FSM_STATE_MULT_A_B_START: a_addr <= bram_addr_zero;
FSM_STATE_MULT_A_B_RELOAD: a_addr <= !a_addr_done ? a_addr_next : a_addr;
endcase
//
end
//
// Internal Memories
//
/* memory inputs */
reg [31: 0] ab_data_in;
reg [31: 0] q_data_in;
reg [31: 0] qn_data_in;
wire [31: 0] s_data_in;
wire [31: 0] sn_data_in;
reg [31: 0] r_data_in;
/* memory outputs */
wire [31: 0] ab_data_out;
wire [31: 0] q_data_out;
wire [31: 0] qn_data_out;
wire [31: 0] s_data_out;
wire [31: 0] sn_data_out;
/* write enables */
reg ab_wren;
reg q_wren;
reg qn_wren;
reg s_wren;
reg sn_wren;
reg r_wren;
/* map */
assign r_bram_in = r_data_in;
assign r_bram_wr = r_wren;
bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH+1))
bram_ab (.clk(clk), .a_addr(ab_addr_ext), .a_wr(ab_wren), .a_in(ab_data_in), .a_out(ab_data_out));
bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_q (.clk(clk), .a_addr(q_addr), .a_wr(q_wren), .a_in(q_data_in), .a_out(q_data_out));
bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH+1))
bram_qn (.clk(clk), .a_addr(qn_addr_ext), .a_wr(qn_wren), .a_in(qn_data_in), .a_out(qn_data_out));
bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_s (.clk(clk), .a_addr(s_addr), .a_wr(s_wren), .a_in(s_data_in), .a_out(s_data_out));
bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_sn (.clk(clk), .a_addr(sn_addr), .a_wr(sn_wren), .a_in(sn_data_in), .a_out(sn_data_out));
//
// Wide Operand Loader
//
integer j;
/* shift logic */
always @(posedge clk)
//
case (fsm_state)
//
FSM_STATE_LOAD_B_SHIFT: begin
/* update the rightmost part of loader buffer */
loader_din[SYSTOLIC_ARRAY_LENGTH-1] <= (b_addr_dly <= bram_addr_last) ? b_bram_out : {32{1'b0}};
/* shift the loader buffer to the left */
for (j=1; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
loader_din[j-1] <= loader_din[j];
end
//
FSM_STATE_LOAD_N_COEFF_SHIFT: begin
/* update the rightmost part of loader buffer */
loader_din[SYSTOLIC_ARRAY_LENGTH-1] <= (n_coeff_addr_dly <= bram_addr_last) ? n_coeff_bram_out : {32{1'b0}};
/* shift the loader buffer to the left */
for (j=1; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
loader_din[j-1] <= loader_din[j];
end
//
FSM_STATE_LOAD_N_SHIFT: begin
/* update the rightmost part of loader buffer */
loader_din[SYSTOLIC_ARRAY_LENGTH-1] <= (n_addr_dly <= bram_addr_last) ? n_bram_out : {32{1'b0}};
/* shift the loader buffer to the left */
for (j=1; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
loader_din[j-1] <= loader_din[j];
end
//
endcase
/* write enable logic */
always @(posedge clk)
//
case (fsm_next_state)
FSM_STATE_LOAD_B_WRITE,
FSM_STATE_LOAD_N_COEFF_WRITE,
FSM_STATE_LOAD_N_WRITE:
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
loader_wren[j] <= 1'b1;
default:
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
loader_wren[j] <= 1'b0;
endcase
/* loader address update logic */
always @(posedge clk) begin
//
case (fsm_state)
FSM_STATE_LOAD_B_START,
FSM_STATE_LOAD_N_COEFF_START,
FSM_STATE_LOAD_N_START:
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
loader_addr_lsb[j] <= syst_cnt_zero;
FSM_STATE_LOAD_B_WRITE,
FSM_STATE_LOAD_N_COEFF_WRITE,
FSM_STATE_LOAD_N_WRITE:
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
loader_addr_lsb[j] <= !syst_cnt_init_done ? syst_cnt_init_next : syst_cnt_init;
endcase
//
case (fsm_next_state)
FSM_STATE_MULT_A_B_START,
FSM_STATE_MULT_AB_N_COEFF_START,
FSM_STATE_MULT_Q_N_START,
FSM_STATE_MULT_A_B_RELOAD,
FSM_STATE_MULT_AB_N_COEFF_RELOAD,
FSM_STATE_MULT_Q_N_RELOAD:
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
loader_addr_lsb[j] <= syst_cnt_zero;
FSM_STATE_MULT_A_B_CRUNCH,
FSM_STATE_MULT_AB_N_COEFF_CRUNCH,
FSM_STATE_MULT_Q_N_CRUNCH:
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
loader_addr_lsb[j] <= !syst_cnt_load_done ? syst_cnt_load_next : syst_cnt_init;
endcase
//
case (fsm_next_state)
FSM_STATE_LOAD_B_START,
FSM_STATE_MULT_A_B_START:
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
loader_addr_msb[j] <= LOADER_ADDR_MSB_B;
FSM_STATE_LOAD_N_COEFF_START,
FSM_STATE_MULT_AB_N_COEFF_START:
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
loader_addr_msb[j] <= LOADER_ADDR_MSB_N_COEFF;
FSM_STATE_LOAD_N_START,
FSM_STATE_MULT_Q_N_START:
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
loader_addr_msb[j] <= LOADER_ADDR_MSB_N;
endcase
//
end
//
// Systolic Array of Processing Elements
//
reg [31: 0] pe_a [0:SYSTOLIC_ARRAY_LENGTH-1];
reg [31: 0] pe_b [0:SYSTOLIC_ARRAY_LENGTH-1];
reg [31: 0] pe_t [0:SYSTOLIC_ARRAY_LENGTH-1];
reg [31: 0] pe_c_in [0:SYSTOLIC_ARRAY_LENGTH-1];
wire [31: 0] pe_p [0:SYSTOLIC_ARRAY_LENGTH-1];
wire [31: 0] pe_c_out[0:SYSTOLIC_ARRAY_LENGTH-1];
//
// These can be turned into a FIFO (maybe later?)...
//
reg [31: 0] pe_c_out_mem[0:SYSTOLIC_ARRAY_LENGTH-1][0:SYSTOLIC_NUM_CYCLES-1];
reg [31: 0] pe_t_mem [0:SYSTOLIC_ARRAY_LENGTH-1][0:SYSTOLIC_NUM_CYCLES-1];
generate for (i=0; i<SYSTOLIC_ARRAY_LENGTH; i=i+1)
begin : modexpa7_systolic_pe_multiplier
modexpa7_systolic_pe systolic_pe_inst
(
.clk (clk),
.a (pe_a[i]),
.b (pe_b[i]),
.t (pe_t[i]),
.c_in (pe_c_in[i]),
.p (pe_p[i]),
.c_out (pe_c_out[i])
);
end
endgenerate
//
// Shift Registers
//
reg [SYSTOLIC_NUM_CYCLES-1:0] shreg_load;
reg [SYSTOLIC_PE_LATENCY :0] shreg_latency;
reg [SYSTOLIC_NUM_CYCLES-1:0] shreg_unload;
wire shreg_done_load = shreg_load[syst_cnt_last];
wire shreg_done_latency = shreg_latency[SYSTOLIC_PE_LATENCY];
wire shreg_done_unload = shreg_unload[syst_cnt_last];
reg shreg_now_loading;
reg shreg_now_latency;
reg shreg_now_unloading;
reg shreg_done_latency_dly;
always @(posedge clk)
shreg_done_latency_dly <= shreg_done_latency;
always @(posedge clk)
//
case (fsm_state)
//
FSM_STATE_MULT_A_B_START,
FSM_STATE_MULT_AB_N_COEFF_START,
FSM_STATE_MULT_Q_N_START,
FSM_STATE_MULT_A_B_RELOAD,
FSM_STATE_MULT_AB_N_COEFF_RELOAD,
FSM_STATE_MULT_Q_N_RELOAD: begin
shreg_now_loading <= 1'b1;
shreg_now_latency <= 1'b1;
shreg_now_unloading <= 1'b0;
shreg_load <= {{SYSTOLIC_NUM_CYCLES-1{1'b0}}, 1'b1};
shreg_latency <= {{SYSTOLIC_PE_LATENCY{1'b0}}, 1'b1};
shreg_unload <= {{SYSTOLIC_NUM_CYCLES-1{1'b0}}, 1'b0};
end
//
FSM_STATE_MULT_A_B_CRUNCH,
FSM_STATE_MULT_AB_N_COEFF_CRUNCH,
FSM_STATE_MULT_Q_N_CRUNCH: begin
shreg_load <= {shreg_load[SYSTOLIC_NUM_CYCLES-2:0], 1'b0};
shreg_latency <= {shreg_latency[SYSTOLIC_PE_LATENCY-1:0], 1'b0};
shreg_unload <= {shreg_unload[SYSTOLIC_NUM_CYCLES-2:0], shreg_latency[SYSTOLIC_PE_LATENCY]};
if (shreg_done_load) shreg_now_loading <= 1'b0;
if (shreg_done_latency) shreg_now_latency <= 1'b0;
if (shreg_done_latency) shreg_now_unloading <= 1'b1;
else if (shreg_done_unload) shreg_now_unloading <= 1'b0;
end
//
default: begin
shreg_now_loading <= 1'b0;
shreg_now_latency <= 1'b0;
shreg_now_unloading <= 1'b0;
end
//
endcase
always @(posedge clk) begin
//
case (fsm_state)
FSM_STATE_MULT_A_B_START: ab_addr_ext <= bram_addr_ext_zero;
FSM_STATE_MULT_AB_N_COEFF_START: q_addr <= bram_addr_zero;
FSM_STATE_MULT_Q_N_START: begin qn_addr_ext <= bram_addr_ext_zero;
ab_addr_ext <= bram_addr_ext_zero;
end
FSM_STATE_MULT_A_B_RELOAD: ab_addr_ext <= ab_addr_ext_next;
FSM_STATE_MULT_AB_N_COEFF_RELOAD: q_addr <= q_addr_next;
FSM_STATE_MULT_Q_N_RELOAD: begin qn_addr_ext <= qn_addr_ext_next;
ab_addr_ext <= ab_addr_ext_next;
end
endcase
//
case (fsm_state)
FSM_STATE_MULT_Q_N_RELOAD: begin
if (qn_addr_ext == {1'b0, bram_addr_last}) begin
s_addr <= bram_addr_zero;
sn_addr <= bram_addr_zero;
end
if ((qn_addr_ext > {1'b0, bram_addr_last}) && (qn_addr_ext < bram_addr_ext_last)) begin
s_addr <= s_addr_next;
sn_addr <= sn_addr_next;
end
if (qn_addr_ext == bram_addr_ext_last) begin
s_addr <= bram_addr_zero;
sn_addr <= bram_addr_zero;
end
end
FSM_STATE_MULT_Q_N_FINAL,
FSM_STATE_SAVE_START,
FSM_STATE_SAVE_WRITE: begin
s_addr <= !s_addr_done ? s_addr_next : s_addr;
sn_addr <= !sn_addr_done ? sn_addr_next : sn_addr;
end
endcase
//
case (fsm_next_state)
FSM_STATE_MULT_AB_N_COEFF_START: ab_addr_ext <= bram_addr_ext_zero;
FSM_STATE_MULT_AB_N_COEFF_RELOAD: ab_addr_ext <= ab_addr_ext_next;
endcase
//
case (fsm_next_state)
FSM_STATE_MULT_Q_N_START: q_addr <= bram_addr_zero;
FSM_STATE_MULT_Q_N_RELOAD: q_addr <= !q_addr_done ? q_addr_next : q_addr;
endcase
//
end
always @(posedge clk) begin
//
if (fsm_state == FSM_STATE_MULT_A_B_CRUNCH) begin
ab_wren <= shreg_done_latency_dly;
ab_data_in <= shreg_done_latency_dly ? pe_p[0] : 32'hXXXXXXXX;
end else begin
ab_wren <= 1'b0;
ab_data_in <= 32'hXXXXXXXX;
end
//
if (fsm_state == FSM_STATE_MULT_AB_N_COEFF_CRUNCH) begin
q_wren <= shreg_done_latency_dly;
q_data_in <= shreg_done_latency_dly ? pe_p[0] : 32'hXXXXXXXX;
end else begin
q_wren <= 1'b0;
q_data_in <= 32'hXXXXXXXX;
end
//
if (fsm_state == FSM_STATE_MULT_Q_N_CRUNCH) begin
qn_wren <= shreg_done_latency_dly;
qn_data_in <= shreg_done_latency_dly ? pe_p[0] : 32'hXXXXXXXX;
end else begin
qn_wren <= 1'b0;
qn_data_in <= 32'hXXXXXXXX;
end
//
case (fsm_state)
FSM_STATE_SAVE_START: r_wren <= 1'b1;
FSM_STATE_SAVE_WRITE: r_wren <= ~r_addr_done;
default: r_wren <= 1'b0;
endcase
//
end
always @(posedge clk)
//
case (fsm_next_state)
FSM_STATE_MULT_A_B_START,
FSM_STATE_MULT_AB_N_COEFF_START,
FSM_STATE_MULT_Q_N_START,
FSM_STATE_MULT_A_B_RELOAD,
FSM_STATE_MULT_AB_N_COEFF_RELOAD,
FSM_STATE_MULT_Q_N_RELOAD:
//
syst_cnt_load <= syst_cnt_zero;
FSM_STATE_MULT_A_B_CRUNCH,
FSM_STATE_MULT_AB_N_COEFF_CRUNCH,
FSM_STATE_MULT_Q_N_CRUNCH:
//
syst_cnt_load <= !syst_cnt_load_done ? syst_cnt_load_next : syst_cnt_load;
endcase
always @(posedge clk)
//
case (fsm_state)
FSM_STATE_MULT_A_B_CRUNCH,
FSM_STATE_MULT_AB_N_COEFF_CRUNCH,
FSM_STATE_MULT_Q_N_CRUNCH: begin
if (shreg_done_latency) syst_cnt_unload <= syst_cnt_zero;
else if (shreg_now_unloading)
syst_cnt_unload <= !syst_cnt_unload_done ? syst_cnt_unload_next : syst_cnt_unload;
end
endcase
always @(posedge clk)
//
case (fsm_state)
FSM_STATE_MULT_A_B_CRUNCH,
FSM_STATE_MULT_AB_N_COEFF_CRUNCH,
FSM_STATE_MULT_Q_N_CRUNCH: begin
if (shreg_now_unloading)
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
pe_c_out_mem[syst_cnt_unload][j] <= pe_c_out[j];
if (shreg_now_unloading) begin
for (j=1; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
pe_t_mem[syst_cnt_unload][j-1] <= pe_p[j];
if (syst_cnt_unload > syst_cnt_zero)
pe_t_mem[syst_cnt_unload-1'b1][SYSTOLIC_ARRAY_LENGTH-1] <= pe_p[0];
else
pe_t_mem[syst_cnt_last][SYSTOLIC_ARRAY_LENGTH-1] <= 32'd0;
end
end
endcase
//
// T and C_IN can be moved to a separate code block
//
always @(posedge clk) begin
//
if (fsm_state == FSM_STATE_MULT_A_B_CRUNCH)
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
//
if (shreg_now_loading) begin
pe_a[j] <= (ab_addr_ext > {1'b0, a_addr}) ? 32'd0 : a_bram_out;
pe_b[j] <= loader_dout[j];
pe_t[j] <= (a_addr == bram_addr_zero) ? 32'd0 : pe_t_mem[syst_cnt_load_dly][j];
pe_c_in[j] <= (a_addr == bram_addr_zero) ? 32'd0 : pe_c_out_mem[syst_cnt_load_dly][j];
end else begin
pe_a[j] <= 32'hXXXXXXXX;
pe_b[j] <= 32'hXXXXXXXX;
pe_t[j] <= 32'hXXXXXXXX;
pe_c_in[j] <= 32'hXXXXXXXX;
end
//
if (fsm_state == FSM_STATE_MULT_AB_N_COEFF_CRUNCH)
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
//
if (shreg_now_loading) begin
pe_a[j] <= ab_data_out;
pe_b[j] <= loader_dout[j];
pe_t[j] <= (ab_addr_ext == bram_addr_ext_zero) ? 32'd0 : pe_t_mem[syst_cnt_load_dly][j];
pe_c_in[j] <= (ab_addr_ext == bram_addr_ext_zero) ? 32'd0 : pe_c_out_mem[syst_cnt_load_dly][j];
end else begin
pe_a[j] <= 32'hXXXXXXXX;
pe_b[j] <= 32'hXXXXXXXX;
pe_t[j] <= 32'hXXXXXXXX;
pe_c_in[j] <= 32'hXXXXXXXX;
end
//
if (fsm_state == FSM_STATE_MULT_Q_N_CRUNCH)
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
//
if (shreg_now_loading) begin
pe_a[j] <= (qn_addr_ext > {1'b0, q_addr}) ? 32'd0 : q_data_out;
pe_b[j] <= loader_dout[j];
pe_t[j] <= (q_addr == bram_addr_zero) ? 32'd0 : pe_t_mem[syst_cnt_load_dly][j];
pe_c_in[j] <= (q_addr == bram_addr_zero) ? 32'd0 : pe_c_out_mem[syst_cnt_load_dly][j];
end else begin
pe_a[j] <= 32'hXXXXXXXX;
pe_b[j] <= 32'hXXXXXXXX;
pe_t[j] <= 32'hXXXXXXXX;
pe_c_in[j] <= 32'hXXXXXXXX;
end
//
//
end
//
// Adder
//
/*
* This adder is used to calculate S = AB + QN.
*
*/
reg add1_ce; // clock enable
reg [31: 0] add1_s; // sum output
wire add1_c_in; // carry input
wire [31: 0] add1_a; // A-input
reg [31: 0] add1_b; // B-input
reg add1_c_in_mask; // flag to not carry anything into the very first word
reg add1_c_out; // carry output
/* add masking into carry feedback chain */
assign add1_c_in = add1_c_out & ~add1_c_in_mask;
/* mask carry for the very first word of N */
//always @(posedge clk) add1_c_in_mask <= (fsm_next_state == FSM_STATE_INIT_2) ? 1'b1 : 1'b0;
always @(posedge clk)
//
if (add1_ce)
//
{add1_c_out, add1_s} <= {{1{1'b0}}, add1_a} + {{1{1'b0}}, add1_b} + {{32{1'b0}}, add1_c_in};
assign add1_a = qn_data_in;
always @(posedge clk)
//
if (fsm_state == FSM_STATE_MULT_Q_N_CRUNCH)
add1_b <= shreg_done_latency_dly ? ab_data_out : 32'hXXXXXXXX;
else
add1_b <= 32'hXXXXXXXX;
always @(posedge clk)
//
if (fsm_state == FSM_STATE_MULT_Q_N_CRUNCH)
add1_c_in_mask <= (shreg_done_latency_dly && (ab_addr_ext == bram_addr_ext_zero)) ? 1'b1 : 1'b0;
else
add1_c_in_mask <= 1'b0;
always @(posedge clk)
//
if (fsm_state == FSM_STATE_MULT_Q_N_CRUNCH)
add1_ce <= shreg_done_latency_dly;
else
add1_ce <= 1'b0;
assign s_data_in = add1_s;
assign sn_data_in = sub1_d;
always @(posedge clk) begin
//
s_wren <= add1_ce;
sn_wren <= sub1_ce;
end
//
// Subtractor
//
/*
* This subtractor is used to calculate SN = S - N.
*
*/
reg sub1_ce; // clock enable
reg [31: 0] sub1_d; // difference output
wire sub1_b_in; // borrow input
wire [31: 0] sub1_a; // A-input
reg [31: 0] sub1_b; // B-input
reg sub1_b_in_mask; // flag to not borrow anything from the very first word
reg sub1_b_out; // borrow output
/* add masking into borrow feedback chain */
assign sub1_b_in = sub1_b_out & ~sub1_b_in_mask;
always @(posedge clk)
//
if (sub1_ce)
//
{sub1_b_out, sub1_d} <= {{1{1'b0}}, sub1_a} - {{1{1'b0}}, sub1_b} - {{32{1'b0}}, sub1_b_in};
assign sub1_a = add1_s;
always @(posedge clk)
//
if (fsm_state == FSM_STATE_MULT_Q_N_CRUNCH)
sub1_b <= add1_ce ? n_bram_out : 32'hXXXXXXXX;
else
sub1_b <= 32'hXXXXXXXX;
always @(posedge clk)
//
if (fsm_state == FSM_STATE_MULT_Q_N_CRUNCH)
sub1_b_in_mask <= (add1_ce && ((qn_addr_ext - 1'b1) == {1'b0, bram_addr_last})) ? 1'b1 : 1'b0;
else
sub1_b_in_mask <= 1'b0;
always @(posedge clk)
//
if (fsm_state == FSM_STATE_MULT_Q_N_CRUNCH)
sub1_ce <= add1_ce && (qn_addr_ext > {1'b0, q_addr});
else
sub1_ce <= 1'b0;
assign s_data_in = add1_s;
always @(posedge clk)
//
s_wren <= add1_ce;
always @(posedge clk)
//
if (fsm_state == FSM_STATE_MULT_Q_N_FINAL)
flag_select_s <= sub1_b_out & ~add1_c_out;
always @(posedge clk)
//
case (fsm_state)
FSM_STATE_SAVE_START,
FSM_STATE_SAVE_WRITE:
r_data_in <= flag_select_s ? s_data_out : sn_data_out;
endcase
//
// FSM Process
//
always @(posedge clk or negedge rst_n)
//
if (rst_n == 1'b0) fsm_state <= FSM_STATE_IDLE;
else fsm_state <= fsm_next_state;
//
// FSM Transition Logic
//
always @* begin
//
fsm_next_state = FSM_STATE_STOP;
//
case (fsm_state)
FSM_STATE_IDLE: if (ena_trig) fsm_next_state = FSM_STATE_LOAD_B_START;
else fsm_next_state = FSM_STATE_IDLE;
//
FSM_STATE_LOAD_B_START: fsm_next_state = FSM_STATE_LOAD_B_SHIFT;
FSM_STATE_LOAD_B_SHIFT: if (mult_cnt_done) fsm_next_state = FSM_STATE_LOAD_B_WRITE;
else fsm_next_state = FSM_STATE_LOAD_B_SHIFT;
FSM_STATE_LOAD_B_WRITE: if (syst_cnt_init_done) fsm_next_state = FSM_STATE_LOAD_B_FINAL;
else fsm_next_state = FSM_STATE_LOAD_B_SHIFT;
FSM_STATE_LOAD_B_FINAL: fsm_next_state = FSM_STATE_LOAD_N_COEFF_START;
//
FSM_STATE_LOAD_N_COEFF_START: fsm_next_state = FSM_STATE_LOAD_N_COEFF_SHIFT;
FSM_STATE_LOAD_N_COEFF_SHIFT: if (mult_cnt_done) fsm_next_state = FSM_STATE_LOAD_N_COEFF_WRITE;
else fsm_next_state = FSM_STATE_LOAD_N_COEFF_SHIFT;
FSM_STATE_LOAD_N_COEFF_WRITE: if (syst_cnt_init_done) fsm_next_state = FSM_STATE_LOAD_N_COEFF_FINAL;
else fsm_next_state = FSM_STATE_LOAD_N_COEFF_SHIFT;
FSM_STATE_LOAD_N_COEFF_FINAL: fsm_next_state = FSM_STATE_LOAD_N_START;
//
FSM_STATE_LOAD_N_START: fsm_next_state = FSM_STATE_LOAD_N_SHIFT;
FSM_STATE_LOAD_N_SHIFT: if (mult_cnt_done) fsm_next_state = FSM_STATE_LOAD_N_WRITE;
else fsm_next_state = FSM_STATE_LOAD_N_SHIFT;
FSM_STATE_LOAD_N_WRITE: if (syst_cnt_init_done) fsm_next_state = FSM_STATE_LOAD_N_FINAL;
else fsm_next_state = FSM_STATE_LOAD_N_SHIFT;
FSM_STATE_LOAD_N_FINAL: fsm_next_state = FSM_STATE_MULT_A_B_START;
//
FSM_STATE_MULT_A_B_START: fsm_next_state = FSM_STATE_MULT_A_B_CRUNCH;
FSM_STATE_MULT_A_B_CRUNCH: if (shreg_done_unload) fsm_next_state = FSM_STATE_MULT_A_B_RELOAD;
else fsm_next_state = FSM_STATE_MULT_A_B_CRUNCH;
FSM_STATE_MULT_A_B_RELOAD: if (ab_addr_ext_done) fsm_next_state = FSM_STATE_MULT_A_B_FINAL;
else fsm_next_state = FSM_STATE_MULT_A_B_CRUNCH;
FSM_STATE_MULT_A_B_FINAL: fsm_next_state = FSM_STATE_MULT_AB_N_COEFF_START;
//
FSM_STATE_MULT_AB_N_COEFF_START: fsm_next_state = FSM_STATE_MULT_AB_N_COEFF_CRUNCH;
FSM_STATE_MULT_AB_N_COEFF_CRUNCH: if (shreg_done_unload) fsm_next_state = FSM_STATE_MULT_AB_N_COEFF_RELOAD;
else fsm_next_state = FSM_STATE_MULT_AB_N_COEFF_CRUNCH;
FSM_STATE_MULT_AB_N_COEFF_RELOAD: if (q_addr_done) fsm_next_state = FSM_STATE_MULT_AB_N_COEFF_FINAL;
else fsm_next_state = FSM_STATE_MULT_AB_N_COEFF_CRUNCH;
FSM_STATE_MULT_AB_N_COEFF_FINAL: fsm_next_state = FSM_STATE_MULT_Q_N_START;
//
FSM_STATE_MULT_Q_N_START: fsm_next_state = FSM_STATE_MULT_Q_N_CRUNCH;
FSM_STATE_MULT_Q_N_CRUNCH: if (shreg_done_unload) fsm_next_state = FSM_STATE_MULT_Q_N_RELOAD;
else fsm_next_state = FSM_STATE_MULT_Q_N_CRUNCH;
FSM_STATE_MULT_Q_N_RELOAD: if (qn_addr_ext_done) fsm_next_state = FSM_STATE_MULT_Q_N_FINAL;
else fsm_next_state = FSM_STATE_MULT_Q_N_CRUNCH;
FSM_STATE_MULT_Q_N_FINAL: fsm_next_state = FSM_STATE_SAVE_START;
//
FSM_STATE_SAVE_START: fsm_next_state = FSM_STATE_SAVE_WRITE;
FSM_STATE_SAVE_WRITE: if (r_addr_done) fsm_next_state = FSM_STATE_SAVE_FINAL;
else fsm_next_state = FSM_STATE_SAVE_WRITE;
FSM_STATE_SAVE_FINAL: fsm_next_state = FSM_STATE_STOP;
//
FSM_STATE_STOP: fsm_next_state = FSM_STATE_IDLE;
endcase
//
end
endmodule
//======================================================================
// End of file
//======================================================================
|