aboutsummaryrefslogtreecommitdiff
path: root/src/rtl/modexpa7_systolic_multiplier.v
blob: 40ccac857887f63e6c44ed23a74d2b0a4783b55e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
//======================================================================
//
// modexpa7_systolic_multiplier.v
// -----------------------------------------------------------------------------
// Systolic Montgomery multiplier.
//
// Authors: Pavel Shatov
//
// Copyright (c) 2017, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// - Redistributions of source code must retain the above copyright
//   notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
//   notice, this list of conditions and the following disclaimer in the
//   documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
//   be used to endorse or promote products derived from this software
//   without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================

module modexpa7_systolic_multiplier #
	(
			//
			// This sets the address widths of memory buffers. Internal data
			// width is 32 bits, so for e.g. 2048-bit operands buffers must store
			// 2048 / 32 = 64 words, and these need 6-bit address bus, because
			// 2 ** 6 = 64.
			//
		parameter	OPERAND_ADDR_WIDTH		= 4,
		
			//
			// Explain.
			//
		parameter	SYSTOLIC_ARRAY_POWER		= 2
	)
	(
		input											clk,
		input											rst_n,

		input											ena,
		output										rdy,

		input											reduce_only,

		output	[OPERAND_ADDR_WIDTH-1:0]	a_bram_addr,
		output	[OPERAND_ADDR_WIDTH-1:0]	b_bram_addr,
		output	[OPERAND_ADDR_WIDTH-1:0]	n_bram_addr,
		output	[OPERAND_ADDR_WIDTH-1:0]	n_coeff_bram_addr,
		output	[OPERAND_ADDR_WIDTH-1:0]	r_bram_addr,

		input		[                32-1:0]	a_bram_out,
		input		[                32-1:0]	b_bram_out,
		input		[                32-1:0]	n_bram_out,
		input		[                32-1:0]	n_coeff_bram_out,

		output	[                32-1:0]	r_bram_in,
		output										r_bram_wr,

		input		[OPERAND_ADDR_WIDTH-1:0]	n_num_words
	);
	
		
		/*
		 * Include Settings
		 */
	`include "pe/modexpa7_primitive_switch.v"
	`include "modexpa7_settings.v"
		

		/*
		 * FSM Declaration
		 */
	localparam	[ 7: 0]	FSM_STATE_IDLE				= 8'h00;
	
	localparam	[ 7: 0]	FSM_STATE_LOAD_START		= 8'h11;
	localparam	[ 7: 0]	FSM_STATE_LOAD_SHIFT		= 8'h12;
	localparam	[ 7: 0]	FSM_STATE_LOAD_WRITE		= 8'h13;
	localparam	[ 7: 0]	FSM_STATE_LOAD_FINAL		= 8'h14;

	localparam	[ 7: 0]	FSM_STATE_MULT_START		= 8'h21;
	localparam	[ 7: 0]	FSM_STATE_MULT_CRUNCH	= 8'h22;
	localparam	[ 7: 0]	FSM_STATE_MULT_FINAL		= 8'h23;
	
	localparam	[ 7: 0]	FSM_STATE_ADD_START		= 8'h31;
	localparam	[ 7: 0]	FSM_STATE_ADD_CRUNCH		= 8'h32;
	localparam	[ 7: 0]	FSM_STATE_ADD_UNLOAD		= 8'h33;
	localparam	[ 7: 0]	FSM_STATE_SUB_UNLOAD		= 8'h34;
	localparam	[ 7: 0]	FSM_STATE_ADD_FINAL		= 8'h35;
	
	localparam	[ 7: 0]	FSM_STATE_SAVE_START		= 8'h41;
	localparam	[ 7: 0]	FSM_STATE_SAVE_WRITE		= 8'h42;
	localparam	[ 7: 0]	FSM_STATE_SAVE_FINAL		= 8'h43;
	
	localparam	[ 7: 0]	FSM_STATE_STOP				= 8'hFF;
	
	
		/*
		 * FSM State / Next State / Previous State
		 */
	reg	[ 7: 0]	fsm_state = FSM_STATE_IDLE;
	reg	[ 7: 0]	fsm_next_state;
	//reg	[ 7: 0]	fsm_prev_state;


		/*
		 * Enable Delay and Trigger
		 */
   reg ena_dly = 1'b0;
	
		// delay enable by one clock cycle
   always @(posedge clk) ena_dly <= ena;

		// trigger new operation when enable goes high
   wire ena_trig = ena && !ena_dly;
	
	
		/*
		 * Ready Flag Logic
		 */
	reg rdy_reg = 1'b1;
	assign rdy = rdy_reg;

   always @(posedge clk or negedge rst_n)
		
			// reset flag
		if (rst_n == 1'b0) rdy_reg <= 1'b1;
		else begin
		
				// clear flag when operation is started
			if (fsm_state == FSM_STATE_IDLE)	rdy_reg <= ~ena_trig;
			
				// set flag after operation is finished
			if (fsm_state == FSM_STATE_STOP)	rdy_reg <= 1'b1;			
			
		end
		
		
		/*
		 * Parameters Latch
		 */
	reg	[OPERAND_ADDR_WIDTH-1:0]	n_num_words_latch;
	reg	[OPERAND_ADDR_WIDTH  :0]	p_num_words_latch;
	reg										reduce_only_latch;

		// save number of words in n when new operation starts
	always @(posedge clk)
		//
		if ((fsm_state == FSM_STATE_IDLE) && ena_trig)
			n_num_words_latch <= n_num_words;
			
	always @(posedge clk)
		//
		if ((fsm_state == FSM_STATE_IDLE) && ena_trig)
			reduce_only_latch <= reduce_only;
			
		
		/*
		 * Multiplication Phase
		 */
	localparam	[ 1: 0]	MULT_PHASE_A_B				= 2'd1;
	localparam	[ 1: 0]	MULT_PHASE_AB_N_COEFF	= 2'd2;
	localparam	[ 1: 0]	MULT_PHASE_Q_N				= 2'd3;
	localparam	[ 1: 0]	MULT_PHASE_STALL			= 2'd0;
	
	reg	[ 1: 0]	mult_phase;
	
	wire	mult_phase_ab   = (mult_phase == MULT_PHASE_A_B)   ? 1'b1 : 1'b0;
	wire	mult_phase_done = (mult_phase == MULT_PHASE_STALL) ? 1'b1 : 1'b0;
	
   always @(posedge clk)
		//
		case (fsm_next_state)
			FSM_STATE_LOAD_START:	if (ena_trig)	mult_phase <= MULT_PHASE_A_B;
			FSM_STATE_MULT_FINAL:
				case (mult_phase)
					MULT_PHASE_A_B:						mult_phase <= MULT_PHASE_AB_N_COEFF;
					MULT_PHASE_AB_N_COEFF:				mult_phase <= MULT_PHASE_Q_N;
					MULT_PHASE_Q_N:						mult_phase <= MULT_PHASE_STALL;
				endcase
		endcase
	
			
		/*
		 * Counters
		 */
			
		// handy values
	wire	[SYSTOLIC_ARRAY_POWER-1:0]	load_mult_cnt_zero = {SYSTOLIC_ARRAY_POWER{1'b0}};
	wire	[SYSTOLIC_CNTR_WIDTH-1:0]	load_syst_cnt_zero = {SYSTOLIC_CNTR_WIDTH{1'b0}};

	wire	[SYSTOLIC_ARRAY_POWER-1:0]	load_mult_cnt_last = {SYSTOLIC_ARRAY_POWER{1'b1}};	
	wire	[SYSTOLIC_CNTR_WIDTH-1:0]	load_syst_cnt_last = n_num_words_latch[OPERAND_ADDR_WIDTH-1:SYSTOLIC_ARRAY_POWER];
	
		// counter
	reg	[SYSTOLIC_ARRAY_POWER-1:0]	load_mult_cnt;
	reg	[SYSTOLIC_CNTR_WIDTH-1:0]	load_syst_cnt;
	
		// handy increment value and stop flag
	wire	[SYSTOLIC_ARRAY_POWER-1:0]	load_mult_cnt_next	= load_mult_cnt + 1'b1;
	wire	[SYSTOLIC_CNTR_WIDTH-1:0]	load_syst_cnt_next	= load_syst_cnt + 1'b1;

	wire										load_mult_cnt_done	= (load_mult_cnt == load_mult_cnt_last) ? 1'b1 : 1'b0;
	wire										load_syst_cnt_done	= (load_syst_cnt == load_syst_cnt_last) ? 1'b1 : 1'b0;
			
		
		/*
		 * Loader Count Logic
		 */
	always @(posedge clk) begin
		//
		case (fsm_state)
			FSM_STATE_LOAD_START:	{load_syst_cnt, load_mult_cnt} <= {load_syst_cnt_zero, load_mult_cnt_zero};
			//
			FSM_STATE_LOAD_SHIFT:	load_mult_cnt <= load_mult_cnt_next;
			FSM_STATE_LOAD_WRITE:	load_syst_cnt <= !load_syst_cnt_done ? load_syst_cnt_next : load_syst_cnt;
		endcase
		//
	end
			
				
		/*
		 * Wide Operand Loader
		 */
	
		/*
		 * Explain how parallelized loader works here...
		 *
		 */
	
	
		// loader input
	reg	[SYSTOLIC_CNTR_WIDTH-1:0]	loader_addr_wr;
	wire	[SYSTOLIC_CNTR_WIDTH-1:0]	loader_addr_rd;
	reg										loader_wren;
	reg	[                 32-1:0]	loader_din [0:SYSTOLIC_ARRAY_LENGTH-1];
	
		// loader output
	wire	[                 32-1:0]	loader_dout[0:SYSTOLIC_ARRAY_LENGTH-1];
	
		// array_input
	wire	[32 * SYSTOLIC_ARRAY_LENGTH - 1 : 0]	pe_a_wide;
	wire	[32 * SYSTOLIC_ARRAY_LENGTH - 1 : 0]	pe_b_wide;
			
		// generate parallelized loader		
	genvar i;
	generate for (i=0; i<SYSTOLIC_ARRAY_LENGTH; i=i+1)
		//
		begin : gen_bram_1rw_1ro_readfirst_loader
			//
			bram_1rw_1ro_readfirst #
			(
				.MEM_WIDTH		(32),
				.MEM_ADDR_BITS	(SYSTOLIC_CNTR_WIDTH)
			)
			bram_loader
			(
				.clk		(clk),
				.a_addr	(loader_addr_wr),
				.a_wr		(loader_wren),
				.a_in		(loader_din[i]),
				.a_out	(),
				.b_addr	(loader_addr_rd),
				.b_out	(loader_dout[i])
			);
			//
			assign pe_b_wide[32 * (i + 1) - 1 -: 32] = loader_dout[i];
			//
		end
		//
	endgenerate
			
				
		/*
		 * Block Memory Addresses
		 */
		
		/*
		 * Explain why there are two memory sizes.
		 */
		
		// the very first addresses
	wire	[OPERAND_ADDR_WIDTH-1:0]	bram_addr_zero			= {      {OPERAND_ADDR_WIDTH{1'b0}}};
	wire	[OPERAND_ADDR_WIDTH  :0]	bram_addr_ext_zero	= {1'b0, {OPERAND_ADDR_WIDTH{1'b0}}};
	
		// the very last addresses
	wire	[OPERAND_ADDR_WIDTH-1:0]	bram_addr_last     = {n_num_words_latch};
	wire	[OPERAND_ADDR_WIDTH  :0]	bram_addr_ext_last = {n_num_words_latch, 1'b1};

		// address registers
	wire	[OPERAND_ADDR_WIDTH-1:0]	a_addr;
	reg	[OPERAND_ADDR_WIDTH-1:0]	b_addr;
	reg	[OPERAND_ADDR_WIDTH-1:0]	n_addr;
	wire	[OPERAND_ADDR_WIDTH  :0]	p_addr_ext_wr;
	wire	[OPERAND_ADDR_WIDTH  :0]	ab_addr_ext_wr;
	reg	[OPERAND_ADDR_WIDTH  :0]	ab_addr_ext_rd;
	wire	[OPERAND_ADDR_WIDTH-1:0]	q_addr_wr;
	wire	[OPERAND_ADDR_WIDTH-1:0]	q_addr_rd;
	wire	[OPERAND_ADDR_WIDTH  :0]	qn_addr_ext_wr;
	reg	[OPERAND_ADDR_WIDTH  :0]	qn_addr_ext_rd;
	reg	[OPERAND_ADDR_WIDTH-1:0]	s_addr;
	reg	[OPERAND_ADDR_WIDTH-1:0]	sn_addr;
	reg	[OPERAND_ADDR_WIDTH-1:0]	r_addr;
		
		// handy increment values
	wire	[OPERAND_ADDR_WIDTH-1:0]	b_addr_next				= b_addr         + 1'b1;
	wire	[OPERAND_ADDR_WIDTH-1:0]	n_addr_next				= n_addr         + 1'b1;
	wire	[OPERAND_ADDR_WIDTH  :0]	ab_addr_ext_rd_next	= ab_addr_ext_rd + 1'b1;
	wire	[OPERAND_ADDR_WIDTH-1:0]	q_addr_rd_next			= q_addr_rd      + 1'b1;
	wire	[OPERAND_ADDR_WIDTH  :0]	qn_addr_ext_rd_next	= qn_addr_ext_rd + 1'b1;
	wire	[OPERAND_ADDR_WIDTH-1:0]	s_addr_next				= s_addr         + 1'b1;
	wire	[OPERAND_ADDR_WIDTH-1:0]	sn_addr_next			= sn_addr        + 1'b1;
	wire	[OPERAND_ADDR_WIDTH-1:0]	r_addr_next				= r_addr         + 1'b1;
	
		// write enables
	wire	p_wren;
	wire	ab_wren;
	wire	q_wren;
	wire	qn_wren;
	reg	s_wren;
	reg	sn_wren;
	reg	r_wren;
	
		// data buses
	wire	[31: 0]	p_data_in;
	wire	[31: 0]	ab_data_in;
	wire	[31: 0]	ab_data_out;
	wire	[31: 0]	q_data_in;
	wire	[31: 0]	q_data_out;
	wire	[31: 0]	qn_data_in;
	wire	[31: 0]	qn_data_out;
	wire	[31: 0]	s_data_in;
	wire	[31: 0]	s_data_out;
	wire	[31: 0]	sn_data_in;
	wire	[31: 0]	sn_data_out;
	wire	[31: 0]	r_data_in;
	
		// handy stop flags
	wire	b_addr_done				= (b_addr         == bram_addr_last)     ? 1'b1 : 1'b0;
	wire	n_addr_done				= (n_addr         == bram_addr_last)     ? 1'b1 : 1'b0;
	wire	ab_addr_ext_rd_done	= (ab_addr_ext_rd == bram_addr_ext_last) ? 1'b1 : 1'b0;
	wire	q_addr_rd_done			= (q_addr_rd      == bram_addr_last)     ? 1'b1 : 1'b0;
	wire	qn_addr_ext_rd_done	= (qn_addr_ext_rd == bram_addr_ext_last) ? 1'b1 : 1'b0;
	wire	s_addr_done				= (s_addr         == bram_addr_last)     ? 1'b1 : 1'b0;
	wire	sn_addr_done			= (sn_addr        == bram_addr_last)     ? 1'b1 : 1'b0;
	wire	r_addr_done				= (r_addr         == bram_addr_last)     ? 1'b1 : 1'b0;

		// delayed addresses
	reg	[OPERAND_ADDR_WIDTH-1:0]	b_addr_dly;
	reg	[OPERAND_ADDR_WIDTH-1:0]	n_addr_dly;
	reg	[OPERAND_ADDR_WIDTH  :0]	ab_addr_ext_rd_dly;
	reg	[OPERAND_ADDR_WIDTH : 0]	qn_addr_ext_rd_dly1;
	reg	[OPERAND_ADDR_WIDTH  :0]	qn_addr_ext_rd_dly2;
	reg	[OPERAND_ADDR_WIDTH  :0]	qn_addr_ext_rd_dly3;
	
	always @(posedge clk) b_addr_dly				<= b_addr;
	always @(posedge clk) n_addr_dly				<= n_addr;
	always @(posedge clk) ab_addr_ext_rd_dly	<= ab_addr_ext_rd;
	always @(posedge clk) qn_addr_ext_rd_dly1 <= qn_addr_ext_rd;
	always @(posedge clk) qn_addr_ext_rd_dly2 <= qn_addr_ext_rd_dly1;
	always @(posedge clk) qn_addr_ext_rd_dly3 <= qn_addr_ext_rd_dly2;
				
		// map registers to top-level ports
	assign b_bram_addr = b_addr;
	assign n_bram_addr = n_addr;
	assign r_bram_addr = r_addr;

		// map
	assign ab_addr_ext_wr	= p_addr_ext_wr[OPERAND_ADDR_WIDTH  :0];
	assign q_addr_wr			= p_addr_ext_wr[OPERAND_ADDR_WIDTH-1:0];
	assign qn_addr_ext_wr	= p_addr_ext_wr[OPERAND_ADDR_WIDTH  :0];
	assign r_bram_wr			= r_wren;
	
	assign ab_data_in		= p_data_in;
	assign q_data_in		= p_data_in;
	assign qn_data_in		= p_data_in;
	assign r_bram_in		= r_data_in;
	
	assign ab_wren		= p_wren && (mult_phase == MULT_PHASE_A_B);
	assign q_wren		= p_wren && (mult_phase == MULT_PHASE_AB_N_COEFF);
	assign qn_wren		= p_wren && (mult_phase == MULT_PHASE_Q_N);
		

	bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH+1))
	bram_ab
	(	.clk(clk),
		.a_addr(ab_addr_ext_wr), .a_wr(ab_wren), .a_in(ab_data_in), .a_out(),
		.b_addr(ab_addr_ext_rd), .b_out(ab_data_out)
	);

	bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
	bram_q
	(	.clk(clk),
		.a_addr(q_addr_wr), .a_wr(q_wren), .a_in(q_data_in), .a_out(),
		.b_addr(q_addr_rd), .b_out(q_data_out)
	);

	bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH+1))
	bram_qn
	(	.clk(clk),
		.a_addr(qn_addr_ext_wr), .a_wr(qn_wren), .a_in(qn_data_in), .a_out(),
		.b_addr(qn_addr_ext_rd), .b_out(qn_data_out)
	);

	bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
	bram_s
	(	.clk(clk),
		.a_addr(s_addr), .a_wr(s_wren), .a_in(s_data_in), .a_out(s_data_out)
	);

	bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
	bram_sn
	(	.clk(clk),
		.a_addr(sn_addr), .a_wr(sn_wren), .a_in(sn_data_in), .a_out(sn_data_out)
	);

				
		/*
		 * Loader Data Input 
		 */
	integer j;
	
		// shift logic
	always @(posedge clk)
		//
		case (fsm_state)
			//
			FSM_STATE_LOAD_SHIFT: begin
		
					// update the rightmost part of loader buffer
				case (mult_phase)
				
					MULT_PHASE_A_B:
						loader_din[SYSTOLIC_ARRAY_LENGTH-1] <=
							(b_addr_dly <= bram_addr_last) ? b_bram_out : {32{1'b0}};
							
					MULT_PHASE_AB_N_COEFF:
						loader_din[SYSTOLIC_ARRAY_LENGTH-1] <=
							(ab_addr_ext_rd_dly <= {1'b0, bram_addr_last}) ? ab_data_out : {32{1'b0}};
							
					MULT_PHASE_Q_N:
						loader_din[SYSTOLIC_ARRAY_LENGTH-1] <=
							(n_addr_dly <= bram_addr_last) ? n_bram_out : {32{1'b0}};
							
				endcase
				
					// shift the loader buffer to the left
				for (j=1; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
					loader_din[j-1] <= loader_din[j];
					
			end
			//			
		endcase


		/*
		 * Load Write Enable Logic
		 */
	always @(posedge clk)
		//
		case (fsm_next_state)
			FSM_STATE_LOAD_WRITE:	loader_wren <= 1'b1;
			default:						loader_wren <= 1'b0;
		endcase


		/*
		 * Loader Address Update Logic
		 */

	always @(posedge clk)
		//
		case (fsm_state)
		
			FSM_STATE_LOAD_START:
				//
				loader_addr_wr <= load_syst_cnt_zero;
				
			FSM_STATE_LOAD_WRITE:
				//
				loader_addr_wr <= !load_syst_cnt_done ? load_syst_cnt_next : load_syst_cnt;
					
		endcase

		/*
		 * Flag
		 */
	reg flag_select_s;
	
	assign r_data_in = flag_select_s ? s_data_out : sn_data_out;
	
	
		/*
		 * Memory Address Control Logic
		 */
	always @(posedge clk) begin
		//
		case (fsm_next_state)
		
			FSM_STATE_LOAD_START: begin
				ab_addr_ext_rd		<= bram_addr_ext_zero;
			end
								
			FSM_STATE_LOAD_SHIFT: begin
				ab_addr_ext_rd		<= ab_addr_ext_rd_next;
			end
		
			FSM_STATE_ADD_START: begin
				ab_addr_ext_rd		<= bram_addr_ext_zero;
				qn_addr_ext_rd		<= bram_addr_ext_zero;
			end
			
			FSM_STATE_ADD_CRUNCH: begin
				ab_addr_ext_rd		<= ab_addr_ext_rd_next;
				qn_addr_ext_rd		<= qn_addr_ext_rd_next;
			end
				
		endcase
		//
		case (fsm_next_state)
	
			FSM_STATE_LOAD_START: begin
				b_addr				<= bram_addr_zero;
				n_addr				<= bram_addr_zero;
			end
								
			FSM_STATE_LOAD_SHIFT: begin
				b_addr 				<= b_addr_next;
				n_addr				<= n_addr_next;
			end
					
			FSM_STATE_ADD_CRUNCH,
			FSM_STATE_ADD_UNLOAD: begin
				if (qn_addr_ext_rd_dly1 == {1'b0, bram_addr_last})			n_addr <= bram_addr_zero;
				else if (qn_addr_ext_rd_dly1 >  {1'b0, bram_addr_last})	n_addr <= n_addr_next;				
			end
			
		endcase
		//
	end


		/*
		 * Multiplier Array
		 */
	reg	pe_array_ena;
	wire	pe_array_rdy;

	always @(posedge clk)
		//
		case (fsm_next_state)
			FSM_STATE_MULT_START:	pe_array_ena <= 1'b1;
			default:						pe_array_ena <= 1'b0;
		endcase
		
	always @(posedge clk)
		//
		if (fsm_next_state == FSM_STATE_MULT_START)
			//
			case (mult_phase)
				MULT_PHASE_A_B:			p_num_words_latch <= {n_num_words_latch, 1'b1};
				MULT_PHASE_AB_N_COEFF:	p_num_words_latch <= {1'b0, n_num_words_latch};
				MULT_PHASE_Q_N:			p_num_words_latch <= {n_num_words_latch, 1'b1};
			endcase
			
	assign a_bram_addr = a_addr;
	assign n_coeff_bram_addr = a_addr;
	assign q_addr_rd = a_addr;
	
	reg	[31: 0]	a_data_out;
	
	always @*
		//
		case (mult_phase)
			MULT_PHASE_A_B:			a_data_out = a_bram_out;
			MULT_PHASE_AB_N_COEFF:	a_data_out = n_coeff_bram_out;
			MULT_PHASE_Q_N:			a_data_out = q_data_out;
			default:						a_data_out = {32{1'bX}};
		endcase
	
	modexpa7_systolic_multiplier_array #
	(
		.OPERAND_ADDR_WIDTH		(OPERAND_ADDR_WIDTH),
		.SYSTOLIC_ARRAY_POWER	(SYSTOLIC_ARRAY_POWER)
	)
	systolic_pe_array
	(
		.clk					(clk),
		.rst_n				(rst_n),

		.ena					(pe_array_ena),
		.rdy					(pe_array_rdy),

		.crt					(reduce_only_latch && mult_phase_ab),

		.loader_addr_rd	(loader_addr_rd),
		
		.pe_a_wide			({SYSTOLIC_ARRAY_LENGTH{a_data_out}}),
		.pe_b_wide			(pe_b_wide),
		
		.a_bram_addr		(a_addr),
		
		.p_bram_addr		(p_addr_ext_wr),
		.p_bram_in			(p_data_in),
		.p_bram_wr			(p_wren),

		.n_num_words		(n_num_words_latch),
		.p_num_words		(p_num_words_latch)
	);
	
		/*
		 * Adder
		 */
		 
	reg				add1_ce;					// clock enable
	wire	[31: 0]	add1_s;					// sum output
	wire				add1_c_in;				// carry input
	wire	[31: 0]	add1_a;					// A-input
	wire	[31: 0]	add1_b;					// B-input
	reg				add1_c_in_mask;		// flag to not carry anything into the very first word
	wire				add1_c_out;				// carry output

	modexpa7_adder32 add1_inst
	(
		.clk		(clk),
		.ce		(add1_ce),
		.a			(add1_a),
		.b			(add1_b),
		.c_in		(add1_c_in),
		.s			(add1_s),
		.c_out	(add1_c_out)
	);

		/*
		 * Subtractor
		 */		 
	reg				sub1_ce;					// clock enable
	wire	[31: 0]	sub1_d;					// difference output
	wire				sub1_b_in;				// borrow input
	wire	[31: 0]	sub1_a;					// A-input
	wire	[31: 0]	sub1_b;					// B-input
	reg				sub1_b_in_mask;		// flag to not borrow anything from the very first word
	wire				sub1_b_out;				// borrow output

	modexpa7_subtractor32 sub1_inst
	(
		.clk		(clk),
		.ce		(sub1_ce),
		.a			(sub1_a),
		.b			(sub1_b),
		.b_in		(sub1_b_in),
		.d			(sub1_d),
		.b_out	(sub1_b_out)
	);
	
		// add masking into carry feedback chain
	assign add1_c_in = add1_c_out & ~add1_c_in_mask;

		// add masking into borrow feedback chain
	assign sub1_b_in = sub1_b_out & ~sub1_b_in_mask;

		// mask carry for the very first words of AB and QN
	always @(posedge clk)
		//
		add1_c_in_mask <= (fsm_state == FSM_STATE_ADD_START) ? 1'b1 : 1'b0;

		// mask borrow for the very first words of S and N
	always @(posedge clk)
		//
		sub1_b_in_mask <= add1_c_in_mask;
			
	
		// map adder inputs
	assign add1_a = ab_data_out;
	assign add1_b = qn_data_out;
	
		// map subtractor inputs
	assign sub1_a = add1_s;
	assign sub1_b = (qn_addr_ext_rd_dly2 <= {1'b0, bram_addr_last}) ? 32'd0 : n_bram_out;
	
		// clock enable
	always @(posedge clk) begin
		//
		case (fsm_state)
			FSM_STATE_ADD_START,
			FSM_STATE_ADD_CRUNCH:	add1_ce <= 1'b1;
			default:						add1_ce <= 1'b0;
		endcase
		//
		sub1_ce <= add1_ce;
		//
	end
		
		// map outputs
	assign s_data_in = add1_s;
	assign sn_data_in = sub1_d;
		
		// write enabled
	always @(posedge clk) begin
		//
		case (fsm_state)
			FSM_STATE_ADD_CRUNCH,
			FSM_STATE_ADD_UNLOAD:	s_wren <= 1'b1;
			default:						s_wren <= 1'b0;		
		endcase
		//
		case (fsm_state)
			FSM_STATE_ADD_CRUNCH,
			FSM_STATE_ADD_UNLOAD,
			FSM_STATE_SUB_UNLOAD,
			FSM_STATE_ADD_FINAL:		sn_wren <= s_wren;
			default:						sn_wren <= 1'b0;
		endcase
		//
		case (fsm_state)
			FSM_STATE_SAVE_START,
			FSM_STATE_SAVE_WRITE:	r_wren <= 1'b1;
			default:						r_wren <= 1'b0;
		endcase
		//
	end

		// ...
	always @(posedge clk) begin
		//
		case (fsm_state)
			FSM_STATE_ADD_CRUNCH,
			FSM_STATE_ADD_UNLOAD: begin
					if (qn_addr_ext_rd_dly1 == {1'b0, bram_addr_zero})			s_addr <= bram_addr_zero;
					else if (qn_addr_ext_rd_dly2 >  {1'b0, bram_addr_last})	s_addr <= s_addr_next;
				end
			FSM_STATE_ADD_FINAL:															s_addr <= bram_addr_zero;
			FSM_STATE_SAVE_START,
			FSM_STATE_SAVE_WRITE:														s_addr <= s_addr_next;
		endcase
		//
		case (fsm_state)
			FSM_STATE_ADD_CRUNCH,
			FSM_STATE_ADD_UNLOAD,
			FSM_STATE_SUB_UNLOAD: begin
					if (qn_addr_ext_rd_dly2 == {1'b0, bram_addr_zero})			sn_addr <= bram_addr_zero;
					else if (qn_addr_ext_rd_dly3 >  {1'b0, bram_addr_last})	sn_addr <= sn_addr_next;
				end
			FSM_STATE_ADD_FINAL:															sn_addr <= bram_addr_zero;
			FSM_STATE_SAVE_START,
			FSM_STATE_SAVE_WRITE:														sn_addr <= sn_addr_next;
		endcase
		//
		case (fsm_state)
			FSM_STATE_SAVE_START:	r_addr <= bram_addr_zero;
			FSM_STATE_SAVE_WRITE:	r_addr <= r_addr_next;
		endcase
		//
	end

		
		/*
		 * Flag Update Logic
		 */
	always @(posedge clk)
		//
		if (fsm_state == FSM_STATE_ADD_FINAL)
			flag_select_s <= sub1_b_out & ~add1_c_out;



			
		/*
		 * FSM Process
		 */
	always @(posedge clk or negedge rst_n)
		//
		if (rst_n == 1'b0)	fsm_state <= FSM_STATE_IDLE;
		else						fsm_state <= fsm_next_state;

	//always @(posedge clk)
		//
		//fsm_prev_state <= fsm_state;
	
	
		/*
		 * FSM Transition Logic
		 */
	always @* begin
		//
		fsm_next_state = FSM_STATE_STOP;
		//
		case (fsm_state)
			//
			FSM_STATE_IDLE:				if (ena_trig)					fsm_next_state = FSM_STATE_LOAD_START;
												else								fsm_next_state = FSM_STATE_IDLE;
			//
			FSM_STATE_LOAD_START:											fsm_next_state = FSM_STATE_LOAD_SHIFT;
			FSM_STATE_LOAD_SHIFT:		if (load_mult_cnt_done)		fsm_next_state = FSM_STATE_LOAD_WRITE;
												else								fsm_next_state = FSM_STATE_LOAD_SHIFT;
			FSM_STATE_LOAD_WRITE:		if (load_syst_cnt_done)		fsm_next_state = FSM_STATE_LOAD_FINAL;
												else								fsm_next_state = FSM_STATE_LOAD_SHIFT;
			FSM_STATE_LOAD_FINAL:											fsm_next_state = FSM_STATE_MULT_START;
			//
			FSM_STATE_MULT_START:											fsm_next_state = FSM_STATE_MULT_CRUNCH;
			FSM_STATE_MULT_CRUNCH:		if (pe_array_rdy)				fsm_next_state = FSM_STATE_MULT_FINAL;
												else								fsm_next_state = FSM_STATE_MULT_CRUNCH;
			FSM_STATE_MULT_FINAL:		if (mult_phase_done)			fsm_next_state = FSM_STATE_ADD_START;
												else								fsm_next_state = FSM_STATE_LOAD_START;
			//
			FSM_STATE_ADD_START:												fsm_next_state = FSM_STATE_ADD_CRUNCH;
			FSM_STATE_ADD_CRUNCH:		if (ab_addr_ext_rd_done)	fsm_next_state = FSM_STATE_ADD_UNLOAD;
												else								fsm_next_state = FSM_STATE_ADD_CRUNCH;
			FSM_STATE_ADD_UNLOAD:											fsm_next_state = FSM_STATE_SUB_UNLOAD;
			FSM_STATE_SUB_UNLOAD:											fsm_next_state = FSM_STATE_ADD_FINAL;
			FSM_STATE_ADD_FINAL:												fsm_next_state = FSM_STATE_SAVE_START;
			//
			FSM_STATE_SAVE_START:											fsm_next_state = FSM_STATE_SAVE_WRITE;
			FSM_STATE_SAVE_WRITE:		if (s_addr_done)				fsm_next_state = FSM_STATE_SAVE_FINAL;
												else								fsm_next_state = FSM_STATE_SAVE_WRITE;
			FSM_STATE_SAVE_FINAL:											fsm_next_state = FSM_STATE_STOP;
			//
			FSM_STATE_STOP:													fsm_next_state = FSM_STATE_IDLE;
			//
		endcase
		//
	end


endmodule

//======================================================================
// End of file
//======================================================================