diff options
author | Pavel V. Shatov (Meister) <meisterpaul1@yandex.ru> | 2017-07-18 02:26:18 +0300 |
---|---|---|
committer | Pavel V. Shatov (Meister) <meisterpaul1@yandex.ru> | 2017-07-18 02:26:18 +0300 |
commit | d88715489690e1d77558bb2d89adce92ecabdc84 (patch) | |
tree | e1e778d89fd8590cab6204204f7cff4f055a2e03 /src/rtl | |
parent | 72a67f04a21ba4006c7b5bf38e01a3aa6592740f (diff) |
Started adding exponentiator module w/ testbench.
Diffstat (limited to 'src/rtl')
-rw-r--r-- | src/rtl/modexpa7_exponentiator.v | 578 |
1 files changed, 578 insertions, 0 deletions
diff --git a/src/rtl/modexpa7_exponentiator.v b/src/rtl/modexpa7_exponentiator.v new file mode 100644 index 0000000..1f55cec --- /dev/null +++ b/src/rtl/modexpa7_exponentiator.v @@ -0,0 +1,578 @@ +//======================================================================
+//
+// modexpa7_exponentiator.v
+// -----------------------------------------------------------------------------
+// Modular Montgomery Exponentiator.
+//
+// Authors: Pavel Shatov
+//
+// Copyright (c) 2017, NORDUnet A/S All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+// - Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// - Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// - Neither the name of the NORDUnet nor the names of its contributors may
+// be used to endorse or promote products derived from this software
+// without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
+// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+//======================================================================
+
+module modexpa7_exponentiator #
+ (
+ //
+ // This sets the address widths of memory buffers. Internal data
+ // width is 32 bits, so for e.g. 2048-bit operands buffers must store
+ // 2048 / 32 = 64 words, and these need 5-bit address bus, because
+ // 2 ** 6 = 64.
+ //
+ parameter OPERAND_ADDR_WIDTH = 4,
+
+ //
+ // Explain.
+ //
+ parameter SYSTOLIC_ARRAY_POWER = 2
+ )
+ (
+ input clk,
+ input rst_n,
+
+ input ena,
+ output rdy,
+
+ output [OPERAND_ADDR_WIDTH-1:0] m_bram_addr, + output [OPERAND_ADDR_WIDTH-1:0] d_bram_addr, + output [OPERAND_ADDR_WIDTH-1:0] n1_bram_addr, + output [OPERAND_ADDR_WIDTH-1:0] n2_bram_addr, + output [OPERAND_ADDR_WIDTH-1:0] n_coeff1_bram_addr, + output [OPERAND_ADDR_WIDTH-1:0] n_coeff2_bram_addr, + output [OPERAND_ADDR_WIDTH-1:0] r_bram_addr, +
+ input [ 32-1:0] m_bram_out, + input [ 32-1:0] d_bram_out, + input [ 32-1:0] n1_bram_out, + input [ 32-1:0] n2_bram_out, + input [ 32-1:0] n_coeff1_bram_out, + input [ 32-1:0] n_coeff2_bram_out, +
+ output [ 32-1:0] r_bram_in,
+ output r_bram_wr,
+
+ input [OPERAND_ADDR_WIDTH-1:0] n_num_words,
+ input [OPERAND_ADDR_WIDTH+4:0] d_num_bits
+ );
+
+
+ //
+ // FSM Declaration
+ //
+ localparam [ 7: 0] FSM_STATE_IDLE = 8'h00;
+
+ localparam [ 7: 0] FSM_STATE_INIT_1 = 8'hA1;
+ localparam [ 7: 0] FSM_STATE_INIT_2 = 8'hA2;
+ localparam [ 7: 0] FSM_STATE_INIT_3 = 8'hA3;
+ localparam [ 7: 0] FSM_STATE_INIT_4 = 8'hA4;
+
+ localparam [ 7: 0] FSM_STATE_LOAD_1 = 8'hB1;
+ localparam [ 7: 0] FSM_STATE_LOAD_2 = 8'hB2;
+ localparam [ 7: 0] FSM_STATE_LOAD_3 = 8'hB3;
+ localparam [ 7: 0] FSM_STATE_LOAD_4 = 8'hB4;
+
+ localparam [ 7: 0] FSM_STATE_CALC_1 = 8'hC1;
+ localparam [ 7: 0] FSM_STATE_CALC_2 = 8'hC2;
+ localparam [ 7: 0] FSM_STATE_CALC_3 = 8'hC3;
+
+ localparam [ 7: 0] FSM_STATE_FILL_1 = 8'hD1;
+ localparam [ 7: 0] FSM_STATE_FILL_2 = 8'hD2;
+ localparam [ 7: 0] FSM_STATE_FILL_3 = 8'hD3;
+ localparam [ 7: 0] FSM_STATE_FILL_4 = 8'hD4;
+
+ localparam [ 7: 0] FSM_STATE_NEXT = 8'hE0;
+
+ localparam [ 7: 0] FSM_STATE_STOP = 8'hFF;
+
+ //
+ // FSM State / Next State
+ //
+ reg [ 7: 0] fsm_state = FSM_STATE_IDLE;
+ reg [ 7: 0] fsm_next_state;
+
+
+ //
+ // Enable Delay and Trigger
+ //
+ reg ena_dly = 1'b0;
+
+ /* delay enable by one clock cycle */
+ always @(posedge clk) ena_dly <= ena;
+
+ /* trigger new operation when enable goes high */
+ wire ena_trig = ena && !ena_dly;
+
+
+ //
+ // Ready Flag Logic
+ //
+ reg rdy_reg = 1'b1;
+ assign rdy = rdy_reg;
+
+ always @(posedge clk or negedge rst_n)
+
+ /* reset flag */
+ if (rst_n == 1'b0) rdy_reg <= 1'b1;
+ else begin
+
+ /* clear flag when operation is started */
+ if (fsm_state == FSM_STATE_IDLE) rdy_reg <= ~ena_trig;
+
+ /* set flag after operation is finished */
+ if (fsm_state == FSM_STATE_STOP) rdy_reg <= 1'b1;
+
+ end
+
+
+ //
+ // Parameters Latch
+ //
+ reg [OPERAND_ADDR_WIDTH-1:0] n_num_words_latch;
+ reg [OPERAND_ADDR_WIDTH+4:0] d_num_bits_latch;
+
+ /* save number of words in a and b when new operation starts */
+ always @(posedge clk)
+ //
+ if (fsm_next_state == FSM_STATE_INIT_1)
+ {n_num_words_latch, d_num_bits_latch} <= {n_num_words, d_num_bits};
+
+
+ //
+ // Block Memory Addresses
+ //
+
+ /*
+ * Explain what every memory does.
+ *
+ */
+
+ /* the very first addresses */
+ wire [OPERAND_ADDR_WIDTH-1:0] bram_addr_zero = {{OPERAND_ADDR_WIDTH{1'b0}}};
+
+ /* the very last addresses */
+ wire [OPERAND_ADDR_WIDTH-1:0] bram_addr_last = {n_num_words_latch};
+
+ /* address registers */
+ reg [OPERAND_ADDR_WIDTH-1:0] m_addr;
+ reg [OPERAND_ADDR_WIDTH-1:0] d_addr;
+ reg [OPERAND_ADDR_WIDTH-1:0] r_addr;
+ reg [OPERAND_ADDR_WIDTH-1:0] t0_addr;
+ reg [OPERAND_ADDR_WIDTH-1:0] t1_addr;
+ reg [OPERAND_ADDR_WIDTH-1:0] t2_addr_wr;
+ wire [OPERAND_ADDR_WIDTH-1:0] t2_addr_rd;
+ reg [OPERAND_ADDR_WIDTH-1:0] p_addr_wr;
+ wire [OPERAND_ADDR_WIDTH-1:0] p1_addr_rd;
+ wire [OPERAND_ADDR_WIDTH-1:0] p2_addr_rd;
+ wire [OPERAND_ADDR_WIDTH-1:0] p3_addr_rd;
+ wire [OPERAND_ADDR_WIDTH-1:0] pp_addr_wr;
+ reg [OPERAND_ADDR_WIDTH-1:0] pp_addr_rd;
+ wire [OPERAND_ADDR_WIDTH-1:0] tp_addr_wr;
+ reg [OPERAND_ADDR_WIDTH-1:0] tp_addr_rd;
+
+ /* handy increment values */
+ wire [OPERAND_ADDR_WIDTH-1:0] m_addr_next = m_addr + 1'b1;
+ wire [OPERAND_ADDR_WIDTH-1:0] d_addr_next = d_addr + 1'b1;
+ wire [OPERAND_ADDR_WIDTH-1:0] r_addr_next = r_addr + 1'b1;
+ wire [OPERAND_ADDR_WIDTH-1:0] t0_addr_next = t0_addr + 1'b1;
+ wire [OPERAND_ADDR_WIDTH-1:0] t1_addr_next = t1_addr + 1'b1;
+ wire [OPERAND_ADDR_WIDTH-1:0] t2_addr_wr_next = t2_addr_wr + 1'b1;
+ wire [OPERAND_ADDR_WIDTH-1:0] p_addr_wr_next = p_addr_wr + 1'b1;
+ wire [OPERAND_ADDR_WIDTH-1:0] pp_addr_rd_next = pp_addr_rd + 1'b1;
+ wire [OPERAND_ADDR_WIDTH-1:0] tp_addr_rd_next = tp_addr_rd + 1'b1;
+
+ /* handy stop flags */
+ wire m_addr_done = (m_addr == bram_addr_last) ? 1'b1 : 1'b0;
+ wire d_addr_done = (d_addr == bram_addr_last) ? 1'b1 : 1'b0;
+ wire r_addr_done = (r_addr == bram_addr_last) ? 1'b1 : 1'b0;
+ wire t0_addr_done = (t0_addr == bram_addr_last) ? 1'b1 : 1'b0;
+ wire t1_addr_done = (t1_addr == bram_addr_last) ? 1'b1 : 1'b0;
+ wire t2_addr_wr_done = (t2_addr_wr == bram_addr_last) ? 1'b1 : 1'b0;
+ wire p_addr_wr_done = (p_addr_wr == bram_addr_last) ? 1'b1 : 1'b0;
+ wire pp_addr_rd_done = (pp_addr_rd == bram_addr_last) ? 1'b1 : 1'b0;
+ wire tp_addr_rd_done = (tp_addr_rd == bram_addr_last) ? 1'b1 : 1'b0;
+
+ /* map registers to top-level ports */
+ assign m_bram_addr = m_addr;
+ assign d_bram_addr = d_addr;
+ assign r_bram_addr = r_addr;
+
+ //
+ // Internal Memories
+ //
+
+ /* memory inputs */
+ reg [31: 0] t0_data_in;
+ reg [31: 0] t1_data_in;
+ reg [31: 0] t2_data_in;
+ reg [31: 0] p_data_in;
+ wire [31: 0] pp_data_in;
+ wire [31: 0] tp_data_in;
+
+ /* memory outputs */
+ wire [31: 0] t0_data_out;
+ wire [31: 0] t1_data_out;
+ wire [31: 0] t2_data_out;
+ wire [31: 0] p1_data_out;
+ wire [31: 0] p2_data_out;
+ wire [31: 0] p3_data_out;
+ wire [31: 0] pp_data_out;
+ wire [31: 0] tp_data_out;
+
+ /* write enables */
+ reg t0_wren;
+ reg t1_wren;
+ reg t2_wren;
+ reg p_wren;
+ wire pp_wren;
+ wire tp_wren;
+
+ bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
+ bram_t0 (.clk(clk), .a_addr(t0_addr), .a_wr(t0_wren), .a_in(t0_data_in), .a_out(t0_data_out));
+
+ bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
+ bram_t1 (.clk(clk), .a_addr(t1_addr), .a_wr(t1_wren), .a_in(t1_data_in), .a_out(t1_data_out));
+
+ bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH)) + bram_t2 (.clk(clk),
+ .a_addr(t2_addr_wr), .a_wr(t2_wren), .a_in(t2_data_in), .a_out(), + .b_addr(t2_addr_rd), .b_out(t2_data_out)); +
+ bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH)) + bram_p1 (.clk(clk),
+ .a_addr(p_addr_wr), .a_wr(p_wren), .a_in(p_data_in), .a_out(), + .b_addr(p1_addr_rd), .b_out(p1_data_out)); +
+ bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH)) + bram_p2 (.clk(clk),
+ .a_addr(p_addr_wr), .a_wr(p_wren), .a_in(p_data_in), .a_out(), + .b_addr(p2_addr_rd), .b_out(p2_data_out)); +
+ bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH)) + bram_p3 (.clk(clk),
+ .a_addr(p_addr_wr), .a_wr(p_wren), .a_in(p_data_in), .a_out(), + .b_addr(p3_addr_rd), .b_out(p3_data_out)); +
+ bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH)) + bram_pp (.clk(clk),
+ .a_addr(pp_addr_wr), .a_wr(pp_wren), .a_in(pp_data_in), .a_out(), + .b_addr(pp_addr_rd), .b_out(pp_data_out)); +
+ bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH)) + bram_tp (.clk(clk),
+ .a_addr(tp_addr_wr), .a_wr(tp_wren), .a_in(tp_data_in), .a_out(), + .b_addr(tp_addr_rd), .b_out(tp_data_out)); +
+
+
+ //
+ // Memory Address Control Logic
+ //
+ always @(posedge clk) begin
+ //
+ // m_addr
+ //
+ case (fsm_next_state)
+ FSM_STATE_INIT_1: m_addr <= bram_addr_zero;
+ FSM_STATE_INIT_2,
+ FSM_STATE_INIT_3,
+ FSM_STATE_INIT_4: m_addr <= !m_addr_done ? m_addr_next : m_addr;
+ endcase
+ //
+ // p_addr_wr
+ //
+ case (fsm_next_state)
+ FSM_STATE_INIT_3,
+ FSM_STATE_FILL_3: p_addr_wr <= bram_addr_zero;
+ FSM_STATE_INIT_4,
+ FSM_STATE_FILL_4: p_addr_wr <= p_addr_wr_next;
+ endcase
+ //
+ // t0_addr
+ //
+ case (fsm_next_state)
+ FSM_STATE_LOAD_3: t0_addr <= bram_addr_zero;
+ FSM_STATE_LOAD_4: t0_addr <= t0_addr_next;
+ endcase
+ //
+ // t1_addr
+ //
+ case (fsm_next_state)
+ FSM_STATE_INIT_3: t1_addr <= bram_addr_zero;
+ FSM_STATE_INIT_4: t1_addr <= t1_addr_next;
+ //
+ FSM_STATE_LOAD_1: t1_addr <= bram_addr_zero;
+ FSM_STATE_LOAD_2,
+ FSM_STATE_LOAD_3,
+ FSM_STATE_LOAD_4: t1_addr <= !t1_addr_done ? t1_addr_next : t1_addr;
+ endcase
+ //
+ // t2_addr_wr
+ //
+ case (fsm_next_state)
+ FSM_STATE_INIT_3: t2_addr_wr <= bram_addr_zero;
+ FSM_STATE_INIT_4: t2_addr_wr <= t2_addr_wr_next;
+ endcase
+ //
+ // pp_addr_rd
+ //
+ case (fsm_next_state)
+ FSM_STATE_FILL_1: pp_addr_rd <= bram_addr_zero;
+ FSM_STATE_FILL_2,
+ FSM_STATE_FILL_3,
+ FSM_STATE_FILL_4: pp_addr_rd <= !pp_addr_rd_done ? pp_addr_rd_next : pp_addr_rd;
+ endcase
+ //
+ end
+
+
+ //
+ // Memory Write Enable Logic
+ //
+ always @(posedge clk) begin
+ //
+ // p_wren
+ //
+ case (fsm_next_state)
+ FSM_STATE_INIT_3,
+ FSM_STATE_INIT_4,
+ FSM_STATE_FILL_3,
+ FSM_STATE_FILL_4: p_wren <= 1'b1;
+ default: p_wren <= 1'b0;
+ endcase
+ //
+ // t0_wren
+ //
+ case (fsm_next_state)
+ FSM_STATE_LOAD_3,
+ FSM_STATE_LOAD_4: t0_wren <= 1'b1;
+ default: t0_wren <= 1'b0;
+ endcase
+ //
+ // t1_wren
+ //
+ case (fsm_next_state)
+ FSM_STATE_INIT_3,
+ FSM_STATE_INIT_4: t1_wren <= 1'b1;
+ default: t1_wren <= 1'b0;
+ endcase
+ //
+ // t2_wren
+ //
+ case (fsm_next_state)
+ FSM_STATE_INIT_3,
+ FSM_STATE_INIT_4: t2_wren <= 1'b1;
+ default: t2_wren <= 1'b0;
+ endcase
+ //
+ end
+
+
+ //
+ // Memory Input Selector
+ //
+ always @(posedge clk) begin
+ //
+ case (fsm_next_state)
+ FSM_STATE_INIT_3: {t2_data_in, t1_data_in} <= {2{32'd1}};
+ FSM_STATE_INIT_4: {t2_data_in, t1_data_in} <= {2{32'd0}};
+ default: {t2_data_in, t1_data_in} <= {2{32'dX}};
+ endcase
+ //
+ case (fsm_next_state)
+ FSM_STATE_INIT_3,
+ FSM_STATE_INIT_4: p_data_in <= m_bram_out;
+ //
+ FSM_STATE_FILL_3,
+ FSM_STATE_FILL_4: p_data_in <= pp_data_out;
+ //
+ default: p_data_in <= 32'dX;
+ endcase
+ //
+ // t0_data_in
+ //
+ case (fsm_next_state)
+ FSM_STATE_LOAD_3,
+ FSM_STATE_LOAD_4: t0_data_in <= t1_data_out;
+ default: t0_data_in <= 32'dX;
+ endcase
+ //
+ end
+
+
+ //
+ // Double Multiplier
+ //
+ reg mul_ena;
+ wire mul_rdy_pp;
+ wire mul_rdy_tp;
+ wire mul_rdy_all = mul_rdy_pp & mul_rdy_tp;
+
+ modexpa7_systolic_multiplier #
+ (
+ .OPERAND_ADDR_WIDTH (OPERAND_ADDR_WIDTH),
+ .SYSTOLIC_ARRAY_POWER (SYSTOLIC_ARRAY_POWER)
+ )
+ mul_pp
+ (
+ .clk (clk),
+ .rst_n (rst_n),
+
+ .ena (mul_ena),
+ .rdy (mul_rdy_pp),
+
+ .a_bram_addr (p1_addr_rd), + .b_bram_addr (p2_addr_rd), + .n_bram_addr (n1_bram_addr), + .n_coeff_bram_addr (n_coeff1_bram_addr), + .r_bram_addr (pp_addr_wr), +
+ .a_bram_out (p1_data_out), + .b_bram_out (p2_data_out), + .n_bram_out (n1_bram_out), + .n_coeff_bram_out (n_coeff1_bram_out), +
+ .r_bram_in (pp_data_in),
+ .r_bram_wr (pp_wren),
+
+ .ab_num_words (n_num_words_latch)
+ );
+
+ modexpa7_systolic_multiplier #
+ (
+ .OPERAND_ADDR_WIDTH (OPERAND_ADDR_WIDTH),
+ .SYSTOLIC_ARRAY_POWER (SYSTOLIC_ARRAY_POWER)
+ )
+ mul_tp
+ (
+ .clk (clk),
+ .rst_n (rst_n),
+
+ .ena (mul_ena),
+ .rdy (mul_rdy_tp),
+
+ .a_bram_addr (t2_addr_rd), + .b_bram_addr (p3_addr_rd), + .n_bram_addr (n2_bram_addr), + .n_coeff_bram_addr (n_coeff2_bram_addr), + .r_bram_addr (tp_addr_wr), +
+ .a_bram_out (t2_data_out), + .b_bram_out (p3_data_out), + .n_bram_out (n2_bram_out), + .n_coeff_bram_out (n_coeff2_bram_out), +
+ .r_bram_in (tp_data_in),
+ .r_bram_wr (tp_wren),
+
+ .ab_num_words (n_num_words_latch)
+ );
+
+
+ always @(posedge clk)
+ //
+ mul_ena <= (fsm_next_state == FSM_STATE_CALC_1) ? 1'b1 : 1'b0;
+
+
+ //
+ // Bit Counter
+ //
+ reg [OPERAND_ADDR_WIDTH+4:0] bit_cnt;
+
+ wire [OPERAND_ADDR_WIDTH+4:0] bit_cnt_zero = {{OPERAND_ADDR_WIDTH{1'b0}}, {5{1'b0}}};
+ wire [OPERAND_ADDR_WIDTH+4:0] bit_cnt_last = d_num_bits_latch;
+ wire [OPERAND_ADDR_WIDTH+4:0] bit_cnt_next = bit_cnt + 1'b1;
+
+ /* handy flag */
+ wire bit_cnt_done = (bit_cnt == bit_cnt_last) ? 1'b1 : 1'b0;
+
+ always @(posedge clk)
+ //
+ if (fsm_next_state == FSM_STATE_LOAD_1)
+ //
+ case (fsm_state)
+ FSM_STATE_INIT_4: bit_cnt <= bit_cnt_zero;
+ FSM_STATE_NEXT: bit_cnt <= !bit_cnt_done ? bit_cnt_next : bit_cnt;
+ endcase
+
+
+
+ //
+ // FSM Process
+ //
+ always @(posedge clk or negedge rst_n)
+ //
+ if (rst_n == 1'b0) fsm_state <= FSM_STATE_IDLE;
+ else fsm_state <= fsm_next_state;
+
+
+ //
+ // FSM Transition Logic
+ //
+ always @* begin
+ //
+ fsm_next_state = FSM_STATE_STOP;
+ //
+ case (fsm_state)
+ //
+ FSM_STATE_IDLE: if (ena_trig) fsm_next_state = FSM_STATE_INIT_1;
+ else fsm_next_state = FSM_STATE_IDLE;
+ //
+ FSM_STATE_INIT_1: fsm_next_state = FSM_STATE_INIT_2;
+ FSM_STATE_INIT_2: fsm_next_state = FSM_STATE_INIT_3;
+ FSM_STATE_INIT_3: fsm_next_state = FSM_STATE_INIT_4;
+ FSM_STATE_INIT_4: if (t1_addr_done) fsm_next_state = FSM_STATE_LOAD_1;
+ else fsm_next_state = FSM_STATE_INIT_4;
+ //
+ FSM_STATE_LOAD_1: fsm_next_state = FSM_STATE_LOAD_2;
+ FSM_STATE_LOAD_2: fsm_next_state = FSM_STATE_LOAD_3;
+ FSM_STATE_LOAD_3: fsm_next_state = FSM_STATE_LOAD_4;
+ FSM_STATE_LOAD_4: if (t0_addr_done) fsm_next_state = FSM_STATE_CALC_1;
+ else fsm_next_state = FSM_STATE_LOAD_4;
+ //
+ FSM_STATE_CALC_1: fsm_next_state = FSM_STATE_CALC_2;
+ FSM_STATE_CALC_2: if (mul_rdy_all) fsm_next_state = FSM_STATE_CALC_3;
+ else fsm_next_state = FSM_STATE_CALC_2;
+ FSM_STATE_CALC_3: fsm_next_state = FSM_STATE_FILL_1;
+ //
+ FSM_STATE_FILL_1: fsm_next_state = FSM_STATE_FILL_2;
+ FSM_STATE_FILL_2: fsm_next_state = FSM_STATE_FILL_3;
+ FSM_STATE_FILL_3: fsm_next_state = FSM_STATE_FILL_4;
+ FSM_STATE_FILL_4: if (p_addr_wr_done) fsm_next_state = FSM_STATE_NEXT;
+ else fsm_next_state = FSM_STATE_FILL_4;
+ //
+ FSM_STATE_NEXT: if (bit_cnt_done) fsm_next_state = FSM_STATE_STOP;
+ else fsm_next_state = FSM_STATE_LOAD_1;
+ //
+ FSM_STATE_STOP: fsm_next_state = FSM_STATE_IDLE;
+ //
+ endcase
+ //
+ end
+
+
+endmodule
|