//======================================================================
//
// Copyright (c) 2016, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module modexpa7_wrapper #
(
parameter OPERAND_ADDR_WIDTH = 5,
parameter SYSTOLIC_ARRAY_POWER = 2
)
(
input clk,
input rst_n,
input cs,
input we,
input [OPERAND_ADDR_WIDTH+2:0] address,
input [ 32-1:0] write_data,
output [ 32-1:0] read_data
);
/*
* Address Decoder
*/
localparam ADDR_MSB_REGS = 1'b0;
localparam ADDR_MSB_CORE = 1'b1;
wire address_msb = address[OPERAND_ADDR_WIDTH+2];
wire [OPERAND_ADDR_WIDTH+1:0] address_lsb = address[OPERAND_ADDR_WIDTH+1:0];
/*
* Output Mux
*/
wire [31: 0] read_data_regs;
wire [31: 0] read_data_core;
/*
* Registers
*/
localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_NAME0 = 'h00; //
localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_NAME1 = 'h01; //
localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_VERSION = 'h02; //
localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_CONTROL = 'h08; // {next, init}
localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_STATUS = 'h09; // {valid, ready}
// localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_MODE // NOT USED ANYMORE
localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_MODULUS_BITS = 'h11; // number of bits in modulus
localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_EXPONENT_BITS = 'h12; // number of bits in exponent
localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_BUFFER_BITS = 'h13; // largest supported number of bits
localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_ARRAY_BITS = 'h15; // number of bits in systolic array
localparam CONTROL_INIT_BIT = 0;
localparam CONTROL_NEXT_BIT = 1;
localparam STATUS_READY_BIT = 0;
localparam STATUS_VALID_BIT = 1;
localparam CORE_NAME0 = 32'h6D6F6465; // "mode"
localparam CORE_NAME1 = 32'h78706137; // "xpa7"
localparam CORE_VERSION = 32'h302E3230; // "0.10"
/*
* Registers
*/
reg [ 1:0] reg_control;
reg [OPERAND_ADDR_WIDTH+5:0] reg_modulus_bits;
reg [OPERAND_ADDR_WIDTH+5:0] reg_exponent_bits;
/*
* Wires
*/
wire [ 1:0] reg_status;
/*
* Internal Quantities
*/
reg [OPERAND_ADDR_WIDTH-1:0] modulus_num_words_core;
reg [OPERAND_ADDR_WIDTH+4:0] exponent_num_bits_core;
/*
* ModExpA7
*/
modexpa7_top #
(
.OPERAND_ADDR_WIDTH (OPERAND_ADDR_WIDTH),
.SYSTOLIC_ARRAY_POWER (SYSTOLIC_ARRAY_POWER)
)
modexpa7_core
(
.clk (clk),
.rst_n (rst_n),
.init (reg_control[CONTROL_INIT_BIT]),
.ready (reg_status[STATUS_READY_BIT]),
.next (reg_control[CONTROL_NEXT_BIT]),
.valid (reg_status[STATUS_VALID_BIT]),
.modulus_num_words (modulus_num_words_core),
.exponent_num_bits (exponent_num_bits_core),
.bus_cs (cs && (address_msb == ADDR_MSB_CORE)),
.bus_we (we),
.bus_addr (address_lsb),
.bus_data_wr (write_data),
.bus_data_rd (read_data_core)
);
/*
* Read Latch
*/
reg [31: 0] read_data_regs;
/*
* Write Checker
*/
// largest supported operand width
localparam [OPERAND_ADDR_WIDTH+5:0] BUFFER_BITS = {1'b1, {OPERAND_ADDR_WIDTH+4{1'b0}}};
// check_modulus_bits
function [OPERAND_ADDR_WIDTH+5:0] check_modulus_bits;
input [OPERAND_ADDR_WIDTH+5:0] num_bits;
begin
//
//t = num_bits[]
//if (num_bits > MAX_BITS) write_check_bits = MAX_BITS;
//else write_check_bits = num_bits;
//
end
endfunction
function [OPERAND_ADDR_WIDTH+5:0] check_exponent_bits;
input [OPERAND_ADDR_WIDTH+5:0] num_bits;
begin
// store input value
check_exponent_bits = num_bits;
// too large?
if (num_bits > BUFFER_BITS)
check_exponent_bits = BUFFER_BITS;
// too small?
if (num_bits == {OPERAND_ADDR_WIDTH+5{1'b0}})
num_bits = {{OPERAND_ADDR_WIDTH+4{1'b0}}, 1'b1};
//
end
endfunction
/*
* Internal Quantities Generator
*/
function [OPERAND_ADDR_WIDTH-1:0] modulus_num_words_core;
input [OPERAND_ADDR_WIDTH+5:0] num_bits;
begin
end
endfunction
function [OPERAND_ADDR_WIDTH+4:0] get_exponent_num_bits_core;
input [OPERAND_ADDR_WIDTH+5:0] num_bits;
reg [OPERAND_ADDR_WIDTH+5:0] num_bits_checked;
begin
// check number of bits (not too large, not too small)
num_bits_checked = check_exponent_bits(num_bits);
// de
end
endfunction
/*
* Write Interface (External Registers)
*/
always @(posedge clk)
//
if (rst_n == 1'b0) begin
//
reg_control <= {1'b0, 1'b0};
reg_modulus_bits <=
reg_exponent_bits <= {1'b1, {OPERAND_ADDR_WIDTH+4{1'b0}}};
//
end else if (cs && (address_msb == ADDR_MSB_REGS) && we)
//
case (address_lsb)
//
ADDR_CONTROL: reg_control <= write_data[ 1: 0];
ADDR_MODULUS_BITS: reg_modulus_bits <= check_modulus_bits(write_data[OPERAND_ADDR_WIDTH+5:0]);
ADDR_EXPONENT_BITS: reg_exponent_bits <= check_exponent_bits(write_data[OPERAND_ADDR_WIDTH+5:0]);
//
endcase
/*
* Write Interface (Internal Quantities)
*/
always @(posedge clk)
//
if (cs && (address_msb == ADDR_MSB_REGS) && we)
//
case (address_lsb)
//
ADDR_MODULUS_BITS: modulus_num_words_core <=
get_modulus_num_words_core(write_data[OPERAND_ADDR_WIDTH+5:0]);
ADDR_EXPONENT_BITS: exponent_num_bits_core <=
get_exponent_num_bits_core(write_data[OPERAND_ADDR_WIDTH+5:0]);
//
endcase
/*
* Read Interface
*/
always @(posedge clk)
//
if (cs && (address_msb == ADDR_MSB_REGS))
//
case (address_lsb)
//
ADDR_NAME0: tmp_read_data <= CORE_NAME0;
ADDR_NAME1: tmp_read_data <= CORE_NAME1;
ADDR_VERSION: tmp_read_data <= CORE_VERSION;
ADDR_CONTROL: tmp_read_data <= {{30{1'b0}}, reg_control};
ADDR_STATUS: tmp_read_data <= {{30{1'b0}}, reg_status};
ADDR_MODULUS_BITS: tmp_read_data <= {{19{1'b0}}, reg_modulus_bits};
ADDR_EXPONENT_BITS: tmp_read_data <= {{19{1'b0}}, reg_exponent_bits};
//
default: tmp_read_data <= {32{1'b0}};
//
endcase
/*
* Register / Core Memory Selector
*/
// delay the leftmost bit of address
reg address_msb_dly;
always @(posedge clk) address_msb_dly = address_msb;
// output mux
reg [31: 0] read_data_mux;
assign read_data = read_data_mux;
always @(*)
//
case (address_msb_last)
ADDR_MSB_REGS: read_data_mux = read_data_regs;
ADDR_MSB_CORE: read_data_mux = read_data_core;
endcase
endmodule