1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
|
//======================================================================
//
// residue.v
// ---------
// Modulus 2**2N residue calculator for montgomery calculations.
//
// m_residue_2_2N_array( N, M, Nr)
// Nr = 00...01 ; Nr = 1 == 2**(2N-2N)
// for (int i = 0; i < 2 * N; i++)
// Nr = Nr shift left 1
// if (Nr less than M) continue;
// Nr = Nr - M
// return Nr
//
//
//
// Author: Peter Magnusson
// Copyright (c) 2015, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module residue #(parameter OPW = 32, parameter ADW = 8)
(
input wire clk,
input wire reset_n,
input wire calculate,
output wire ready,
input wire [14 : 0] nn, //MAX(2*N)=8192*2 (14 bit)
input wire [(ADW - 1) : 0] length,
output wire [(ADW - 1) : 0] opa_rd_addr,
input wire [(OPW - 1) : 0] opa_rd_data,
output wire [(ADW - 1) : 0] opa_wr_addr,
output wire [(OPW - 1) : 0] opa_wr_data,
output wire opa_wr_we,
output wire [(ADW - 1) : 0] opm_addr,
input wire [(OPW - 1) : 0] opm_data
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
localparam CTRL_IDLE = 4'h0;
localparam CTRL_INIT = 4'h1;
localparam CTRL_INIT_STALL = 4'h2;
localparam CTRL_SHL = 4'h3;
localparam CTRL_SHL_STALL = 4'h4;
localparam CTRL_COMPARE = 4'h5;
localparam CTRL_COMPARE_STALL = 4'h6;
localparam CTRL_SUB = 4'h7;
localparam CTRL_SUB_STALL = 4'h8;
localparam CTRL_LOOP = 4'h9;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [(ADW - 1) : 0] opa_rd_addr_reg;
reg [(ADW - 1) : 0] opa_wr_addr_reg;
reg [(OPW - 1) : 0] opa_wr_data_reg;
reg opa_wr_we_reg;
reg [(ADW - 1) : 0] opm_addr_reg;
reg ready_reg;
reg ready_new;
reg ready_we;
reg [03 : 0] residue_ctrl_reg;
reg [03 : 0] residue_ctrl_new;
reg residue_ctrl_we;
reg reset_word_index;
reg reset_n_counter;
reg [14 : 0] loop_counter_1_to_nn_reg; //for i = 1 to nn (2*N)
reg [14 : 0] loop_counter_1_to_nn_new;
reg loop_counter_1_to_nn_we;
reg [14 : 0] nn_reg;
reg nn_we;
reg [(ADW - 1) : 0] length_m1_reg;
reg [(ADW - 1) : 0] length_m1_new;
reg length_m1_we;
reg [(ADW - 1) : 0] word_index_reg;
reg [(ADW - 1) : 0] word_index_new;
reg word_index_we;
reg [(OPW - 1) : 0] one_data;
wire [(OPW - 1) : 0] sub_data;
wire [(OPW - 1) : 0] shl_data;
reg sub_carry_in_new;
reg sub_carry_in_reg;
wire sub_carry_out;
reg shl_carry_in_new;
reg shl_carry_in_reg;
wire shl_carry_out;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign opa_rd_addr = opa_rd_addr_reg;
assign opa_wr_addr = opa_wr_addr_reg;
assign opa_wr_data = opa_wr_data_reg;
assign opa_wr_we = opa_wr_we_reg;
assign opm_addr = opm_addr_reg;
assign ready = ready_reg;
//----------------------------------------------------------------
// Instantions
//----------------------------------------------------------------
adder #(.OPW(OPW)) add_inst(
.a(opa_rd_data),
.b( ~ opm_data),
.carry_in(sub_carry_in_reg),
.sum(sub_data),
.carry_out(sub_carry_out)
);
shl #(.OPW(OPW)) shl_inst(
.a(opa_rd_data),
.carry_in(shl_carry_in_reg),
.amul2(shl_data),
.carry_out(shl_carry_out)
);
//----------------------------------------------------------------
// reg_update
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin
if (!reset_n)
begin
residue_ctrl_reg <= CTRL_IDLE;
word_index_reg <= {ADW{1'b1}};
length_m1_reg <= {ADW{1'b1}};
nn_reg <= 15'h0;
loop_counter_1_to_nn_reg <= 15'h0;
ready_reg <= 1'b1;
sub_carry_in_reg <= 1'b0;
shl_carry_in_reg <= 1'b0;
end
else
begin
if (residue_ctrl_we)
residue_ctrl_reg <= residue_ctrl_new;
if (word_index_we)
word_index_reg <= word_index_new;
if (length_m1_we)
length_m1_reg <= length_m1_new;
if (nn_we)
nn_reg <= nn;
if (loop_counter_1_to_nn_we)
loop_counter_1_to_nn_reg <= loop_counter_1_to_nn_new;
if (ready_we)
ready_reg <= ready_new;
sub_carry_in_reg <= sub_carry_in_new;
shl_carry_in_reg <= shl_carry_in_new;
end
end // reg_update
//----------------------------------------------------------------
// loop counter process. implements for (int i = 0; i < 2 * N; i++)
//
// m_residue_2_2N_array( N, M, Nr)
// Nr = 00...01 ; Nr = 1 == 2**(2N-2N)
// for (int i = 0; i < 2 * N; i++)
// Nr = Nr shift left 1
// if (Nr less than M) continue;
// Nr = Nr - M
// return Nr
//
//----------------------------------------------------------------
always @*
begin : process_1_to_2n
loop_counter_1_to_nn_new = loop_counter_1_to_nn_reg + 15'h1;
loop_counter_1_to_nn_we = 1'b0;
if (reset_n_counter)
begin
loop_counter_1_to_nn_new = 15'h1;
loop_counter_1_to_nn_we = 1'b1;
end
if (residue_ctrl_reg == CTRL_LOOP)
loop_counter_1_to_nn_we = 1'b1;
end
//----------------------------------------------------------------
// implements looping over words in a multiword operation
//----------------------------------------------------------------
always @*
begin : word_index_process
word_index_new = word_index_reg - 1'b1;
word_index_we = 1'b1;
if (reset_word_index)
word_index_new = length_m1_reg;
if (residue_ctrl_reg == CTRL_IDLE)
//reduce a pipeline stage with early read
word_index_new = length_m1_new;
end
//----------------------------------------------------------------
// writer process. implements:
// Nr = 00...01 ; Nr = 1 == 2**(2N-2N)
// Nr = Nr shift left 1
// Nr = Nr - M
//
// m_residue_2_2N_array( N, M, Nr)
// Nr = 00...01 ; Nr = 1 == 2**(2N-2N)
// for (int i = 0; i < 2 * N; i++)
// Nr = Nr shift left 1
// if (Nr less than M) continue;
// Nr = Nr - M
// return Nr
//----------------------------------------------------------------
always @*
begin : writer_process
opa_wr_addr_reg = word_index_reg;
case (residue_ctrl_reg)
CTRL_INIT:
begin
opa_wr_data_reg = one_data;
opa_wr_we_reg = 1'b1;
end
CTRL_SUB:
begin
opa_wr_data_reg = sub_data;
opa_wr_we_reg = 1'b1;
end
CTRL_SHL:
begin
opa_wr_data_reg = shl_data;
opa_wr_we_reg = 1'b1;
end
default:
begin
opa_wr_data_reg = 32'h0;
opa_wr_we_reg = 1'b0;
end
endcase
end
//----------------------------------------------------------------
// reader process. reads from new value because it occurs one
// cycle earlier than the writer.
//----------------------------------------------------------------
always @*
begin : reader_process
opa_rd_addr_reg = word_index_new;
opm_addr_reg = word_index_new;
end
//----------------------------------------------------------------
// carry process. "Ripple carry awesomeness!"
//----------------------------------------------------------------
always @*
begin : carry_process
case (residue_ctrl_reg)
CTRL_COMPARE:
sub_carry_in_new = sub_carry_out;
CTRL_SUB:
sub_carry_in_new = sub_carry_out;
default:
sub_carry_in_new = 1'b1;
endcase
case (residue_ctrl_reg)
CTRL_SHL:
shl_carry_in_new = shl_carry_out;
default:
shl_carry_in_new = 1'b0;
endcase
end
//----------------------------------------------------------------
// Nr = 00...01 ; Nr = 1 == 2**(2N-2N)
//----------------------------------------------------------------
always @*
begin : one_process
one_data = 32'h0;
if (residue_ctrl_reg == CTRL_INIT)
if (word_index_reg == length_m1_reg)
one_data = {{(OPW - 1){1'b0}}, 1'b1};
end
//----------------------------------------------------------------
// residue_ctrl
//
// Control FSM for residue
//----------------------------------------------------------------
always @*
begin : residue_ctrl
ready_new = 1'b0;
ready_we = 1'b0;
reset_word_index = 1'b0;
reset_n_counter = 1'b0;
length_m1_new = length - 1'b1;
length_m1_we = 1'b0;
nn_we = 1'b0;
residue_ctrl_new = CTRL_IDLE;
residue_ctrl_we = 1'b0;
case (residue_ctrl_reg)
CTRL_IDLE:
if (calculate)
begin
ready_new = 1'b0;
ready_we = 1'b1;
reset_word_index = 1'b1;
length_m1_we = 1'b1;
nn_we = 1'b1;
residue_ctrl_new = CTRL_INIT;
residue_ctrl_we = 1'b1;
end
// Nr = 00...01 ; Nr = 1 == 2**(2N-2N)
CTRL_INIT:
if (word_index_reg == 0)
begin
residue_ctrl_new = CTRL_INIT_STALL;
residue_ctrl_we = 1'b1;
end
CTRL_INIT_STALL:
begin
reset_word_index = 1'b1;
reset_n_counter = 1'b1;
residue_ctrl_new = CTRL_SHL;
residue_ctrl_we = 1'b1;
end
// Nr = Nr shift left 1
CTRL_SHL:
begin
if (word_index_reg == 0)
begin
residue_ctrl_new = CTRL_SHL_STALL;
residue_ctrl_we = 1'b1;
end
end
CTRL_SHL_STALL:
begin
reset_word_index = 1'b1;
residue_ctrl_new = CTRL_COMPARE;
residue_ctrl_we = 1'b1;
end
//if (Nr less than M) continue
CTRL_COMPARE:
if (word_index_reg == 0)
begin
residue_ctrl_new = CTRL_COMPARE_STALL;
residue_ctrl_we = 1'b1;
end
CTRL_COMPARE_STALL:
begin
reset_word_index = 1'b1;
residue_ctrl_we = 1'b1;
if (sub_carry_in_reg == 1'b1)
//TODO: Bug! detect CF to detect less than, but no detect ZF to detect equal to.
residue_ctrl_new = CTRL_SUB;
else
residue_ctrl_new = CTRL_LOOP;
end
//Nr = Nr - M
CTRL_SUB:
if (word_index_reg == 0)
begin
residue_ctrl_new = CTRL_SUB_STALL;
residue_ctrl_we = 1'b1;
end
CTRL_SUB_STALL:
begin
residue_ctrl_new = CTRL_LOOP;
residue_ctrl_we = 1'b1;
end
//for (int i = 0; i < 2 * N; i++)
CTRL_LOOP:
begin
if (loop_counter_1_to_nn_reg == nn_reg)
begin
ready_new = 1'b1;
ready_we = 1'b1;
residue_ctrl_new = CTRL_IDLE;
residue_ctrl_we = 1'b1;
end
else
begin
reset_word_index = 1'b1;
residue_ctrl_new = CTRL_SHL;
residue_ctrl_we = 1'b1;
end
end
default:
begin
end
endcase
end
endmodule // residue
//======================================================================
// EOF residue.v
//======================================================================
|