1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
//======================================================================
//
// modexp.v
// --------
// Top level wrapper for the modula exponentiation core. The core
// is used to implement public key algorithms such as RSA,
// DH, ElGamal etc.
//
// The core calculates the following function:
//
// C = M ** e mod N
//
// M is a message with a length of n bits
// e is the exponent with a length of m bits
// N is the modulus with a length of n bits
//
// n can be 32 and up to and including 8192 bits in steps
// of 32 bits.
// m can be one and up to and including 8192 bits in steps
// of 32 bits.
//
// The core has a 32-bit memory like interface, but provides
// status signals to inform the system that a given operation
// has is done. Additionally, any errors will also be asserted.
//
//
// Author: Joachim Strombergson, Peter Magnusson
// Copyright (c) 2015, Assured AB
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//
//======================================================================
module modexp(
input wire clk,
input wire reset_n,
input wire cs,
input wire we,
input wire [11 : 0] address,
input wire [31 : 0] write_data,
output wire [31 : 0] read_data
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
localparam GENERAL_PREFIX = 4'h0;
localparam ADDR_NAME0 = 8'h00;
localparam ADDR_NAME1 = 8'h01;
localparam ADDR_VERSION = 8'h02;
localparam ADDR_CTRL = 8'h08;
localparam CTRL_INIT_BIT = 0;
localparam CTRL_NEXT_BIT = 1;
localparam ADDR_STATUS = 8'h09;
localparam STATUS_READY_BIT = 0;
localparam ADDR_CYCLES_HIGH = 8'h10;
localparam ADDR_CYCLES_LOW = 8'h11;
localparam ADDR_MODULUS_LENGTH = 8'h20;
localparam ADDR_EXPONENT_LENGTH = 8'h21;
localparam ADDR_MODULUS_PTR_RST = 8'h30;
localparam ADDR_MODULUS_DATA = 8'h31;
localparam ADDR_EXPONENT_PTR_RST = 8'h40;
localparam ADDR_EXPONENT_DATA = 8'h41;
localparam ADDR_MESSAGE_PTR_RST = 8'h50;
localparam ADDR_MESSAGE_DATA = 8'h51;
localparam ADDR_RESULT_PTR_RST = 8'h60;
localparam ADDR_RESULT_DATA = 8'h61;
localparam DEFAULT_MODLENGTH = 8'h80; // 2048 bits.
localparam DEFAULT_EXPLENGTH = 8'h80;
localparam CORE_NAME0 = 32'h6d6f6465; // "mode"
localparam CORE_NAME1 = 32'h78702020; // "xp "
localparam CORE_VERSION = 32'h302e3532; // "0.52"
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [07 : 0] exponent_length_reg;
reg [07 : 0] exponent_length_new;
reg exponent_length_we;
reg [07 : 0] modulus_length_reg;
reg [07 : 0] modulus_length_new;
reg modulus_length_we;
reg start_reg;
reg start_new;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
reg exponent_mem_api_rst;
reg exponent_mem_api_cs;
reg exponent_mem_api_wr;
wire [31 : 0] exponent_mem_api_read_data;
reg modulus_mem_api_rst;
reg modulus_mem_api_cs;
reg modulus_mem_api_wr;
wire [31 : 0] modulus_mem_api_read_data;
reg message_mem_api_rst;
reg message_mem_api_cs;
reg message_mem_api_wr;
wire [31 : 0] message_mem_api_read_data;
reg result_mem_api_rst;
reg result_mem_api_cs;
wire [31 : 0] result_mem_api_read_data;
wire ready;
wire [63 : 0] cycles;
reg [31 : 0] tmp_read_data;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign read_data = tmp_read_data;
//----------------------------------------------------------------
// core instantiations.
//----------------------------------------------------------------
modexp_core core_inst(
.clk(clk),
.reset_n(reset_n),
.start(start_reg),
.ready(ready),
.exponent_length(exponent_length_reg),
.modulus_length(modulus_length_reg),
.cycles(cycles),
.exponent_mem_api_cs(exponent_mem_api_cs),
.exponent_mem_api_wr(exponent_mem_api_wr),
.exponent_mem_api_rst(exponent_mem_api_rst),
.exponent_mem_api_write_data(write_data),
.exponent_mem_api_read_data(exponent_mem_api_read_data),
.modulus_mem_api_cs(modulus_mem_api_cs),
.modulus_mem_api_wr(modulus_mem_api_wr),
.modulus_mem_api_rst(modulus_mem_api_rst),
.modulus_mem_api_write_data(write_data),
.modulus_mem_api_read_data(modulus_mem_api_read_data),
.message_mem_api_cs(message_mem_api_cs),
.message_mem_api_wr(message_mem_api_wr),
.message_mem_api_rst(message_mem_api_rst),
.message_mem_api_write_data(write_data),
.message_mem_api_read_data(message_mem_api_read_data),
.result_mem_api_cs(result_mem_api_cs),
.result_mem_api_rst(result_mem_api_rst),
.result_mem_api_read_data(result_mem_api_read_data)
);
//----------------------------------------------------------------
// reg_update
//
// Update functionality for all registers in the core.
// All registers are positive edge triggered with asynchronous
// active low reset. All registers have write enable.
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin
if (!reset_n)
begin
start_reg <= 1'b0;
exponent_length_reg <= DEFAULT_EXPLENGTH;
modulus_length_reg <= DEFAULT_MODLENGTH;
end
else
begin
start_reg <= start_new;
if (exponent_length_we)
begin
exponent_length_reg <= write_data[7 : 0];
end
if (modulus_length_we)
begin
modulus_length_reg <= write_data[7 : 0];
end
end
end // reg_update
//----------------------------------------------------------------
// api
//
// The interface command decoding logic.
//----------------------------------------------------------------
always @*
begin : api
modulus_length_we = 1'b0;
exponent_length_we = 1'b0;
start_new = 1'b0;
modulus_mem_api_rst = 1'b0;
modulus_mem_api_cs = 1'b0;
modulus_mem_api_wr = 1'b0;
exponent_mem_api_rst = 1'b0;
exponent_mem_api_cs = 1'b0;
exponent_mem_api_wr = 1'b0;
message_mem_api_rst = 1'b0;
message_mem_api_cs = 1'b0;
message_mem_api_wr = 1'b0;
result_mem_api_rst = 1'b0;
result_mem_api_cs = 1'b0;
tmp_read_data = 32'h00000000;
if (cs)
begin
case (address[11 : 8])
GENERAL_PREFIX:
begin
if (we)
begin
case (address[7 : 0])
ADDR_CTRL:
begin
start_new = write_data[0];
end
ADDR_MODULUS_LENGTH:
begin
modulus_length_we = 1'b1;
end
ADDR_EXPONENT_LENGTH:
begin
exponent_length_we = 1'b1;
end
ADDR_MODULUS_PTR_RST:
begin
modulus_mem_api_rst = 1'b1;
end
ADDR_MODULUS_DATA:
begin
modulus_mem_api_cs = 1'b1;
modulus_mem_api_wr = 1'b1;
end
ADDR_EXPONENT_PTR_RST:
begin
exponent_mem_api_rst = 1'b1;
end
ADDR_EXPONENT_DATA:
begin
exponent_mem_api_cs = 1'b1;
exponent_mem_api_wr = 1'b1;
end
ADDR_MESSAGE_PTR_RST:
begin
message_mem_api_rst = 1'b1;
end
ADDR_MESSAGE_DATA:
begin
message_mem_api_cs = 1'b1;
message_mem_api_wr = 1'b1;
end
ADDR_RESULT_PTR_RST:
begin
result_mem_api_rst = 1'b1;
end
default:
begin
end
endcase // case (address[7 : 0])
end
else
begin
case (address[7 : 0])
ADDR_NAME0:
tmp_read_data = CORE_NAME0;
ADDR_NAME1:
tmp_read_data = CORE_NAME1;
ADDR_VERSION:
tmp_read_data = CORE_VERSION;
ADDR_CTRL:
tmp_read_data = {31'h00000000, start_reg};
ADDR_STATUS:
tmp_read_data = {31'h00000000, ready};
ADDR_CYCLES_HIGH:
tmp_read_data = cycles[63 : 32];
ADDR_CYCLES_LOW:
tmp_read_data = cycles[31 : 0];
ADDR_MODULUS_LENGTH:
tmp_read_data = {24'h000000, modulus_length_reg};
ADDR_EXPONENT_LENGTH:
tmp_read_data = {24'h000000, exponent_length_reg};
ADDR_MODULUS_DATA:
begin
modulus_mem_api_cs = 1'b1;
tmp_read_data = modulus_mem_api_read_data;
end
ADDR_EXPONENT_DATA:
begin
exponent_mem_api_cs = 1'b1;
tmp_read_data = exponent_mem_api_read_data;
end
ADDR_MESSAGE_DATA:
begin
message_mem_api_cs = 1'b1;
tmp_read_data = message_mem_api_read_data;
end
ADDR_RESULT_DATA:
begin
result_mem_api_cs = 1'b1;
tmp_read_data = result_mem_api_read_data;
end
default:
begin
end
endcase // case (address[7 : 0])
end
end
default:
begin
end
endcase // case (address[11 : 8])
end // if (cs)
end // api
endmodule // modexp
//======================================================================
// EOF modexp.v
//======================================================================
|