//======================================================================
//
// tb_modexp.v
// -----------
// Testbench modular exponentiation core.
//
//
// Author: Joachim Strombergson, Peter Magnusson
// Copyright (c) 2015, Assured AB
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
//------------------------------------------------------------------
// Simulator directives.
//------------------------------------------------------------------
`timescale 1ns/100ps
//------------------------------------------------------------------
// Test module.
//------------------------------------------------------------------
module tb_modexp();
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
// Debug output control.
parameter DEBUG = 0;
parameter DEBUG_EI = 0;
parameter DEBUG_RESULT = 0;
parameter DISPLAY_TEST_CYCLES = 1;
// Clock defines.
localparam CLK_HALF_PERIOD = 1;
localparam CLK_PERIOD = 2 * CLK_HALF_PERIOD;
// The DUT address map.
localparam GENERAL_PREFIX = 4'h0;
localparam ADDR_NAME0 = 8'h00;
localparam ADDR_NAME1 = 8'h01;
localparam ADDR_VERSION = 8'h02;
localparam ADDR_CTRL = 8'h08;
localparam CTRL_START_BIT = 0;
localparam ADDR_STATUS = 8'h09;
localparam STATUS_READY_BIT = 0;
localparam ADDR_MODULUS_LENGTH = 8'h20;
localparam ADDR_EXPONENT_LENGTH = 8'h21;
localparam ADDR_LENGTH = 8'h22;
localparam ADDR_MODULUS_PTR_RST = 8'h30;
localparam ADDR_MODULUS_DATA = 8'h31;
localparam ADDR_EXPONENT_PTR_RST = 8'h40;
localparam ADDR_EXPONENT_DATA = 8'h41;
localparam ADDR_MESSAGE_PTR_RST = 8'h50;
localparam ADDR_MESSAGE_DATA = 8'h51;
localparam ADDR_RESULT_PTR_RST = 8'h60;
localparam ADDR_RESULT_DATA = 8'h61;
//----------------------------------------------------------------
// Register and Wire declarations.
//----------------------------------------------------------------
reg [31 : 0] test_cycle_ctr;
reg test_cycle_ctr_rst;
reg test_cycle_ctr_inc;
reg [31 : 0] cycle_ctr;
reg [31 : 0] error_ctr;
reg [31 : 0] tc_ctr;
reg [31 : 0] read_data;
reg [127 : 0] result_data;
reg tb_clk;
reg tb_reset_n;
reg tb_cs;
reg tb_we;
reg [11 : 0] tb_address;
reg [31 : 0] tb_write_data;
wire [31 : 0] tb_read_data;
wire tb_error;
//----------------------------------------------------------------
// Device Under Test.
//----------------------------------------------------------------
modexp dut(
.clk(tb_clk),
.reset_n(tb_reset_n),
.cs(tb_cs),
.we(tb_we),
.address(tb_address),
.write_data(tb_write_data),
.read_data(tb_read_data)
);
//----------------------------------------------------------------
// clk_gen
//
// Always running clock generator process.
//----------------------------------------------------------------
always
begin : clk_gen
#CLK_HALF_PERIOD;
tb_clk = !tb_clk;
end // clk_gen
//----------------------------------------------------------------
// sys_monitor()
//
// An always running process that creates a cycle counter and
// conditionally displays information about the DUT.
//----------------------------------------------------------------
always
begin : sys_monitor
cycle_ctr = cycle_ctr + 1;
#(CLK_PERIOD);
if (DEBUG)
begin
dump_dut_state();
end
end
//----------------------------------------------------------------
// test_cycle_counter
//
// Used to measure the number of cycles it takes to perform
// a given test case.
//----------------------------------------------------------------
always @ (posedge tb_clk)
begin
if (test_cycle_ctr_rst)
test_cycle_ctr = 64'h0000000000000000;
if (test_cycle_ctr_inc)
test_cycle_ctr = test_cycle_ctr + 1;
end
//----------------------------------------------------------------
// start_test_cycle_ctr
//
// Reset and start the test cycle counter.
//----------------------------------------------------------------
task start_test_cycle_ctr();
begin
test_cycle_ctr_rst = 1;
#(CLK_PERIOD);
test_cycle_ctr_rst = 0;
test_cycle_ctr_inc = 1;
end
endtask // start_test_cycle_ctr()
//----------------------------------------------------------------
// stop_test_cycle_ctr()
//
// Stop the test cycle counter and optionally display the
// result.
//----------------------------------------------------------------
task stop_test_cycle_ctr();
begin
test_cycle_ctr_inc = 0;
#(CLK_PERIOD);
if (DISPLAY_TEST_CYCLES)
$display("*** Number of cycles performed during test: 0x%016x", test_cycle_ctr);
end
endtask // stop_test_cycle_ctr()
//----------------------------------------------------------------
// ei_monitor()
//
// Displays ei_new, the most important variable for determining
// what modexp will do (i.e. should Z=MONTPROD( Z, P, M) be
// performed
//----------------------------------------------------------------
always @*
begin : ei_monitor
if (DEBUG_EI)
if (dut.modexp_ctrl_reg == dut.CTRL_ITERATE_Z_P)
$display("loop counter %d: ei = %d", dut.loop_counter_reg, dut.ei_reg);
end
//----------------------------------------------------------------
// z_monitor()
//
// Displays the contents of the result_mem.
//----------------------------------------------------------------
always @*
begin : result_monitor
if (DEBUG_RESULT)
$display("result_mem[0][1] = %x %x",dut.result_mem.mem[0],dut.result_mem.mem[1]);
end
//----------------------------------------------------------------
// dump_dut_state()
//
// Dump the state of the dump when needed.
//----------------------------------------------------------------
task dump_dut_state();
begin
$display("cycle: 0x%016x", cycle_ctr);
$display("State of DUT");
$display("------------");
$display("Inputs and outputs:");
$display("cs = 0x%01x, we = 0x%01x", tb_cs, tb_we);
$display("addr = 0x%08x, read_data = 0x%08x, write_data = 0x%08x",
tb_address, tb_read_data, tb_write_data);
$display("");
$display("State:");
$display("ready_reg = 0x%01x, start_reg = 0x%01x, start_new = 0x%01x",
dut.core_inst.ready_reg, dut.start_reg, dut.start_new);
$display("residue_valid = 0x%01x", dut.core_inst.residue_valid_reg);
$display("loop_counter_reg = 0x%08x", dut.core_inst.loop_counter_reg);
$display("exponent_length_reg = 0x%02x, modulus_length_reg = 0x%02x length_m1 = 0x%02x",
dut.exponent_length_reg, dut.modulus_length_reg, dut.core_inst.length_m1);
$display("ctrl_reg = 0x%04x", dut.core_inst.modexp_ctrl_reg);
$display("");
end
endtask // dump_dut_state
//----------------------------------------------------------------
// reset_dut()
//
// Toggle reset to put the DUT into a well known state.
//----------------------------------------------------------------
task reset_dut();
begin
$display("*** Toggle reset.");
tb_reset_n = 0;
#(2 * CLK_PERIOD);
tb_reset_n = 1;
$display("");
end
endtask // reset_dut
//----------------------------------------------------------------
// display_test_results()
//
// Display the accumulated test results.
//----------------------------------------------------------------
task display_test_results();
begin
if (error_ctr == 0)
begin
$display("*** All %02d test cases completed successfully", tc_ctr);
end
else
begin
$display("*** %02d tests completed - %02d test cases did not complete successfully.",
tc_ctr, error_ctr);
end
end
endtask // display_test_results
//----------------------------------------------------------------
// init_sim()
//
// Initialize all counters and testbed functionality as well
// as setting the DUT inputs to defined values.
//----------------------------------------------------------------
task init_sim();
begin
cycle_ctr = 0;
error_ctr = 0;
tc_ctr = 0;
tb_clk = 0;
tb_reset_n = 1;
tb_cs = 0;
tb_we = 0;
tb_address = 8'h00;
tb_write_data = 32'h00000000;
end
endtask // init_sim
//----------------------------------------------------------------
// read_word()
//
// Read a data word from the given address in the DUT.
// the word read will be available in the global variable
// read_data.
//----------------------------------------------------------------
task read_word(input [11 : 0] address);
begin
tb_address = address;
tb_cs = 1;
tb_we = 0;
#(CLK_PERIOD);
read_data = tb_read_data;
tb_cs = 0;
if (DEBUG)
begin
$display("*** (read_word) Reading 0x%08x from 0x%02x.", read_data, address);
$display("");
end
end
endtask // read_word
//----------------------------------------------------------------
// write_word()
//
// Write the given word to the DUT using the DUT interface.
//----------------------------------------------------------------
task write_word(input [11 : 0] address,
input [31 : 0] word);
begin
if (DEBUG)
begin
$display("*** (write_word) Writing 0x%08x to 0x%02x.", word, address);
$display("");
end
tb_address = address;
tb_write_data = word;
tb_cs = 1;
tb_we = 1;
#(CLK_PERIOD);
tb_cs = 0;
tb_we = 0;
end
endtask // write_word
//----------------------------------------------------------------
// wait_ready()
//
// Wait until the ready flag in the core is set.
//----------------------------------------------------------------
task wait_ready();
begin
while (tb_read_data != 32'h00000001)
read_word({GENERAL_PREFIX, ADDR_STATUS});
if (DEBUG)
$display("*** (wait_ready) Ready flag has been set.");
end
endtask // wait_ready
//----------------------------------------------------------------
// dump_message_mem()
//
// Dump the contents of the message memory.
//----------------------------------------------------------------
task dump_message_mem();
reg [8 : 0] i;
begin
$display("Contents of the message memory:");
for (i = 0 ; i < 256 ; i = i + 8)
begin
$display("message_mem[0x%02x .. 0x%02x] = 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x",
i[7 : 0], (i[7 : 0] + 8'h07),
dut.core_inst.message_mem.mem[(i[7 : 0] + 0)], dut.core_inst.message_mem.mem[(i[7 : 0] + 1)],
dut.core_inst.message_mem.mem[(i[7 : 0] + 2)], dut.core_inst.message_mem.mem[(i[7 : 0] + 3)],
dut.core_inst.message_mem.mem[(i[7 : 0] + 4)], dut.core_inst.message_mem.mem[(i[7 : 0] + 5)],
dut.core_inst.message_mem.mem[(i[7 : 0] + 6)], dut.core_inst.message_mem.mem[(i[7 : 0] + 7)],
);
end
$display("");
end
endtask // dump_message_mem
//----------------------------------------------------------------
// dump_exponent_mem()
//
// Dump the contents of the exponent memory.
//----------------------------------------------------------------
task dump_exponent_mem();
reg [8 : 0] i;
begin
$display("Contents of the exponent memory:");
for (i = 0 ; i < 256 ; i = i + 8)
begin
$display("exponent_mem[0x%02x .. 0x%02x] = 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x",
i[7 : 0], (i[7 : 0] + 8'h07),
dut.core_inst.exponent_mem.mem[(i[7 : 0] + 0)], dut.core_inst.exponent_mem.mem[(i[7 : 0] + 1)],
dut.core_inst.exponent_mem.mem[(i[7 : 0] + 2)], dut.core_inst.exponent_mem.mem[(i[7 : 0] + 3)],
dut.core_inst.exponent_mem.mem[(i[7 : 0] + 4)], dut.core_inst.exponent_mem.mem[(i[7 : 0] + 5)],
dut.core_inst.exponent_mem.mem[(i[7 : 0] + 6)], dut.core_inst.exponent_mem.mem[(i[7 : 0] + 7)],
);
end
$display("");
end
endtask // dump_exponent_mem
//----------------------------------------------------------------
// dump_modulus_mem()
//
// Dump the contents of the modulus memory.
//----------------------------------------------------------------
task dump_modulus_mem();
reg [8 : 0] i;
begin
$display("Contents of the modulus memory:");
for (i = 0 ; i < 256 ; i = i + 8)
begin
$display("modulus_mem[0x%02x .. 0x%02x] = 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x",
i[7 : 0], (i[7 : 0] + 8'h07),
dut.core_inst.modulus_mem.mem[(i[7 : 0] + 0)], dut.core_inst.modulus_mem.mem[(i[7 : 0] + 1)],
dut.core_inst.modulus_mem.mem[(i[7 : 0] + 2)], dut.core_inst.modulus_mem.mem[(i[7 : 0] + 3)],
dut.core_inst.modulus_mem.mem[(i[7 : 0] + 4)], dut.core_inst.modulus_mem.mem[(i[7 : 0] + 5)],
dut.core_inst.modulus_mem.mem[(i[7 : 0] + 6)], dut.core_inst.modulus_mem.mem[(i[7 : 0] + 7)],
);
end
$display("");
end
endtask // dump_modulus_mem
//----------------------------------------------------------------
// dump_residue_mem()
//
// Dump the contents of the residue memory.
//----------------------------------------------------------------
task dump_residue_mem();
reg [8 : 0] i;
begin
$display("Contents of the residue memory:");
for (i = 0 ; i < 256 ; i = i + 8)
begin
$display("residue_mem[0x%02x .. 0x%02x] = 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x",
i[7 : 0], (i[7 : 0] + 8'h07),
dut.core_inst.residue_mem.mem[(i[7 : 0] + 0)], dut.core_inst.residue_mem.mem[(i[7 : 0] + 1)],
dut.core_inst.residue_mem.mem[(i[7 : 0] + 2)], dut.core_inst.residue_mem.mem[(i[7 : 0] + 3)],
dut.core_inst.residue_mem.mem[(i[7 : 0] + 4)], dut.core_inst.residue_mem.mem[(i[7 : 0] + 5)],
dut.core_inst.residue_mem.mem[(i[7 : 0] + 6)], dut.core_inst.residue_mem.mem[(i[7 : 0] + 7)],
);
end
$display("");
end
endtask // dump_residue_mem
//----------------------------------------------------------------
// dump_result_mem()
//
// Dump the contents of the result memory.
//----------------------------------------------------------------
task dump_result_mem();
reg [8 : 0] i;
begin
$display("Contents of the result memory:");
for (i = 0 ; i < 256 ; i = i + 8)
begin
$display("result_mem[0x%02x .. 0x%02x] = 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x",
i[7 : 0], (i[7 : 0] + 8'h07),
dut.core_inst.result_mem.mem[(i[7 : 0] + 0)], dut.core_inst.result_mem.mem[(i[7 : 0] + 1)],
dut.core_inst.result_mem.mem[(i[7 : 0] + 2)], dut.core_inst.result_mem.mem[(i[7 : 0] + 3)],
dut.core_inst.result_mem.mem[(i[7 : 0] + 4)], dut.core_inst.result_mem.mem[(i[7 : 0] + 5)],
dut.core_inst.result_mem.mem[(i[7 : 0] + 6)], dut.core_inst.result_mem.mem[(i[7 : 0] + 7)],
);
end
$display("");
end
endtask // dump_result_mem
//----------------------------------------------------------------
// dump_memories()
//
// Dump the contents of the memories in the dut.
//----------------------------------------------------------------
task dump_memories();
begin
dump_message_mem();
dump_exponent_mem();
dump_modulus_mem();
dump_residue_mem();
dump_result_mem();
end
endtask // dump_memories
//----------------------------------------------------------------
// tc1
//
// A first, very simple testcase where we want to do:
// c = m ** e % N with the following (decimal) test values:
// m = 3
// e = 7
// n = 11
// c = 3 ** 7 % 11 = 9
//----------------------------------------------------------------
task tc1();
reg [31 : 0] read_data;
begin
tc_ctr = tc_ctr + 1;
$display("TC1: Trying to calculate 3**7 mod 11 = 9");
// Write 3 to message memory.
write_word({GENERAL_PREFIX, ADDR_MESSAGE_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h00000003);
// Write 7 to exponent memory and set length to one word.
write_word({GENERAL_PREFIX, ADDR_EXPONENT_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_DATA}, 32'h00000007);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_LENGTH}, 32'h00000001);
// Write 11 to modulus memory and set length to one word.
write_word({GENERAL_PREFIX, ADDR_MODULUS_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h0000000b);
write_word({GENERAL_PREFIX, ADDR_MODULUS_LENGTH}, 32'h00000001);
start_test_cycle_ctr();
// Start processing and wait for ready.
write_word({GENERAL_PREFIX, ADDR_CTRL}, 32'h00000001);
wait_ready();
stop_test_cycle_ctr();
// Read out result word and check result.
write_word({GENERAL_PREFIX, ADDR_RESULT_PTR_RST}, 32'h00000000);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA});
read_data = tb_read_data;
if (read_data == 32'h00000009)
begin
$display("*** TC1 successful.");
$display("");
end
else
begin
$display("*** ERROR: TC1 NOT successful.");
$display("Expected: 0x09, got 0x%08x", read_data);
error_ctr = error_ctr + 1;
dump_memories();
end
end
endtask // tc1
//----------------------------------------------------------------
// tc2
//
// c = m ** e % N with the following (decimal) test values:
// m = 251
// e = 251
// n = 257
// c = 251 ** 251 % 257 = 183
//----------------------------------------------------------------
task tc2();
reg [31 : 0] read_data;
begin
tc_ctr = tc_ctr + 1;
$display("TC2: Trying to calculate 251**251 mod 257 = 183");
// Write 13 to message memory.
write_word({GENERAL_PREFIX, ADDR_MESSAGE_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h000000fb);
// Write 11 to exponent memory and set length to one word.
write_word({GENERAL_PREFIX, ADDR_EXPONENT_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_DATA}, 32'h000000fb);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_LENGTH}, 32'h00000001);
// Write 7 to modulus memory and set length to one word.
write_word({GENERAL_PREFIX, ADDR_MODULUS_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h00000101);
write_word({GENERAL_PREFIX, ADDR_MODULUS_LENGTH}, 32'h00000001);
start_test_cycle_ctr();
// Start processing and wait for ready.
write_word({GENERAL_PREFIX, ADDR_CTRL}, 32'h00000001);
wait_ready();
stop_test_cycle_ctr();
// Read out result word and check result.
write_word({GENERAL_PREFIX, ADDR_RESULT_PTR_RST}, 32'h00000000);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA});
read_data = tb_read_data;
if (read_data == 32'h000000b7)
begin
$display("*** TC2 successful.");
$display("");
end
else
begin
$display("*** ERROR: TC2 NOT successful.");
$display("Expected: 0x000000b7, got 0x%08x", read_data);
error_ctr = error_ctr + 1;
end
end
endtask // tc2
//----------------------------------------------------------------
// tc3
//
// c = m ** e % N with the following (decimal) test values:
// m = 0x81
// e = 0x41
// n = 0x87
// c = 0x81 ** 0x41 % 0x87 = 0x36
//----------------------------------------------------------------
task tc3();
reg [31 : 0] read_data;
begin
tc_ctr = tc_ctr + 1;
$display("TC3: Trying to calculate 0x81 ** 0x41 mod 0x87 = 0x36");
write_word({GENERAL_PREFIX, ADDR_MESSAGE_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h00000081);
// Write 11 to exponent memory and set length to one word.
write_word({GENERAL_PREFIX, ADDR_EXPONENT_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_DATA}, 32'h00000041);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_LENGTH}, 32'h00000001);
// Write 7 to modulus memory and set length to one word.
write_word({GENERAL_PREFIX, ADDR_MODULUS_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h00000087);
write_word({GENERAL_PREFIX, ADDR_MODULUS_LENGTH}, 32'h00000001);
start_test_cycle_ctr();
// Start processing and wait for ready.
write_word({GENERAL_PREFIX, ADDR_CTRL}, 32'h00000001);
wait_ready();
stop_test_cycle_ctr();
// Read out result word and check result.
write_word({GENERAL_PREFIX, ADDR_RESULT_PTR_RST}, 32'h00000000);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA});
read_data = tb_read_data;
if (read_data == 32'h00000036)
begin
$display("*** TC3 successful.");
$display("");
end
else
begin
$display("*** ERROR: TC3 NOT successful.");
$display("Expected: 0x06, got 0x%08x", read_data);
error_ctr = error_ctr + 1;
end
end
endtask // tc3
//----------------------------------------------------------------
// assertEquals
//----------------------------------------------------------------
function assertEquals(
input [31:0] expected,
input [31:0] actual
);
begin
if (expected === actual)
begin
assertEquals = 1; // success
end
else
begin
$display("Expected: 0x%08x, got 0x%08x", expected, actual);
assertEquals = 0; // failure
end
end
endfunction // assertEquals
integer success;
//----------------------------------------------------------------
// autogenerated_BASIC_33bit()
//
// Task that tests modexp with 33 bit oprerands.
//----------------------------------------------------------------
task autogenerated_BASIC_33bit();
reg [31 : 0] read_data;
begin
success = 32'h1;
tc_ctr = tc_ctr + 1;
$display("autogenerated_BASIC_33bit: 00000001946473e1 ** h000000010e85e74f mod 0000000170754797 ");
write_word({GENERAL_PREFIX, ADDR_MESSAGE_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h00000001);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h946473e1);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_DATA}, 32'h00000001);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_DATA}, 32'h0e85e74f);
write_word({GENERAL_PREFIX, ADDR_MODULUS_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h00000001);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h70754797);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_LENGTH}, 32'h00000002);
write_word({GENERAL_PREFIX, ADDR_MODULUS_LENGTH}, 32'h00000002);
start_test_cycle_ctr();
// Start processing and wait for ready.
write_word({GENERAL_PREFIX, ADDR_CTRL}, 32'h00000001);
wait_ready();
stop_test_cycle_ctr();
write_word({GENERAL_PREFIX, ADDR_RESULT_PTR_RST}, 32'h00000000);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'h00000000, read_data);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'h7761ed4f, read_data);
if (success !== 1)
begin
$display("*** ERROR: autogenerated_BASIC_33bit was NOT successful.");
error_ctr = error_ctr + 1;
end
else
$display("*** autogenerated_BASIC_33bit success.");
end
endtask // autogenerated_BASIC_33bit
//----------------------------------------------------------------
// autogenerated_BASIC_128bit()
//
// Task that tests modexp with 128 bit operands.
//----------------------------------------------------------------
task autogenerated_BASIC_128bit();
reg [31 : 0] read_data;
begin
success = 32'h1;
tc_ctr = tc_ctr + 1;
$display("autogenerated_BASIC_128bit");
write_word({GENERAL_PREFIX, ADDR_MESSAGE_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h29462882);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h12caa2d5);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'hb80e1c66);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h1006807f);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_DATA}, 32'h3285c343);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_DATA}, 32'h2acbcb0f);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_DATA}, 32'h4d023228);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_DATA}, 32'h2ecc73db);
write_word({GENERAL_PREFIX, ADDR_MODULUS_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h267d2f2e);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h51c216a7);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'hda752ead);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h48d22d89);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_LENGTH}, 32'h00000004);
write_word({GENERAL_PREFIX, ADDR_MODULUS_LENGTH}, 32'h00000004);
start_test_cycle_ctr();
// Start processing and wait for ready.
write_word({GENERAL_PREFIX, ADDR_CTRL}, 32'h00000001);
wait_ready();
stop_test_cycle_ctr();
write_word({GENERAL_PREFIX, ADDR_RESULT_PTR_RST}, 32'h00000000);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'h0ddc404d, read_data); //TEMPLATE_EXPECTED_VALUES
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'h91600596, read_data); //TEMPLATE_EXPECTED_VALUES
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'h7425a8d8, read_data); //TEMPLATE_EXPECTED_VALUES
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'ha066ca56, read_data); //TEMPLATE_EXPECTED_VALUES
if (success !== 1)
begin
$display("*** ERROR: autogenerated_BASIC_128bit was NOT successful.");
error_ctr = error_ctr + 1;
end
else
$display("*** autogenerated_BASIC_128bit success.");
end
endtask // autogenerated_BASIC_128bit
//----------------------------------------------------------------
// e65537_64bit_modulus()
//----------------------------------------------------------------
task e65537_64bit_modulus();
reg [31 : 0] read_data;
begin
success = 32'h1;
tc_ctr = tc_ctr + 1;
$display("Test with e = 65537 and 64 bit modulus.");
write_word({GENERAL_PREFIX, ADDR_EXPONENT_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_DATA}, 32'h00010001);
write_word({GENERAL_PREFIX, ADDR_MODULUS_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'hf077656f);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h3bf9e69b);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'hb6684dc3);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h79a5824b);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_LENGTH}, 32'h00000001);
write_word({GENERAL_PREFIX, ADDR_MODULUS_LENGTH}, 32'h00000002);
start_test_cycle_ctr();
// Start processing and wait for ready.
write_word({GENERAL_PREFIX, ADDR_CTRL}, 32'h00000001);
wait_ready();
stop_test_cycle_ctr();
write_word({GENERAL_PREFIX, ADDR_RESULT_PTR_RST}, 32'h00000000);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'h419a024f, read_data);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'hdddf178e, read_data);
if (success !== 1)
begin
$display("*** ERROR: e65537_64bit_modulus was NOT successful.");
error_ctr = error_ctr + 1;
end
else
$display("*** e65537_64bit_modulus success.");
end
endtask // e65537_64bit_modulus
//----------------------------------------------------------------
// e65537_128bit_modulus()
//----------------------------------------------------------------
task e65537_128bit_modulus();
reg [31 : 0] read_data;
begin
success = 32'h1;
tc_ctr = tc_ctr + 1;
$display("Test with e = 65537 and 128 bit modulus.");
write_word({GENERAL_PREFIX, ADDR_EXPONENT_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_DATA}, 32'h00010001);
write_word({GENERAL_PREFIX, ADDR_MODULUS_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'hf5e8eee0);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'hc06b048a);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h964b2105);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h2c36ad6b);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h956e61b3);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h27997bc4);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h94e7e5c9);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'hb53585cf);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_LENGTH}, 32'h00000001);
write_word({GENERAL_PREFIX, ADDR_MODULUS_LENGTH}, 32'h00000004);
start_test_cycle_ctr();
// Start processing and wait for ready.
write_word({GENERAL_PREFIX, ADDR_CTRL}, 32'h00000001);
wait_ready();
stop_test_cycle_ctr();
write_word({GENERAL_PREFIX, ADDR_RESULT_PTR_RST}, 32'h00000000);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'h1e97bff8, read_data);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'h60029e6e, read_data);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'hedaef85e, read_data);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'hfb0c6562, read_data);
if (success !== 1)
begin
$display("*** ERROR: e65537_128bit_modulus was NOT successful.");
error_ctr = error_ctr + 1;
end
else
$display("*** e65537_128bit_modulus success.");
end
endtask // e65537_128bit_modulus
//----------------------------------------------------------------
// e65537_256bit_modulus()
//
// Task that tests modexp with small exponent and 256 bit modulus.
//----------------------------------------------------------------
task e65537_256bit_modulus();
reg [31 : 0] read_data;
begin
success = 32'h1;
tc_ctr = tc_ctr + 1;
$display("Test with e = 65537 and 256 bit modulus.");
write_word({GENERAL_PREFIX, ADDR_EXPONENT_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_DATA}, 32'h00010001);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'hf169d36e);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'hbe2ce61d);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'hc2e87809);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h4fed15c3);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h7c70eac5);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'ha123e643);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h299b36d2);
write_word({GENERAL_PREFIX, ADDR_MESSAGE_DATA}, 32'h788e583b);
write_word({GENERAL_PREFIX, ADDR_MODULUS_PTR_RST}, 32'h00000000);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'hf169d36e);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'hbe2ce61d);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'hc2e87809);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h4fed15c3);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h7c70eac5);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'ha123e643);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h299b36d2);
write_word({GENERAL_PREFIX, ADDR_MODULUS_DATA}, 32'h788e583b);
write_word({GENERAL_PREFIX, ADDR_EXPONENT_LENGTH}, 32'h00000001);
write_word({GENERAL_PREFIX, ADDR_MODULUS_LENGTH}, 32'h00000008);
start_test_cycle_ctr();
// Start processing and wait for ready.
write_word({GENERAL_PREFIX, ADDR_CTRL}, 32'h00000001);
wait_ready();
stop_test_cycle_ctr();
write_word({GENERAL_PREFIX, ADDR_RESULT_PTR_RST}, 32'h00000000);
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'h0ddc404d, read_data); //TEMPLATE_EXPECTED_VALUES
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'h91600596, read_data); //TEMPLATE_EXPECTED_VALUES
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'h7425a8d8, read_data); //TEMPLATE_EXPECTED_VALUES
read_word({GENERAL_PREFIX, ADDR_RESULT_DATA}); read_data = tb_read_data; success = success & assertEquals(32'ha066ca56, read_data); //TEMPLATE_EXPECTED_VALUES
if (success !== 1)
begin
$display("*** ERROR: e65537_256bit_modulus was NOT successful.");
error_ctr = error_ctr + 1;
end
else
$display("*** e65537_256bit_modulus success.");
end
endtask // e65537_256bit_modulus
//----------------------------------------------------------------
// main
//
// The main test functionality.
//----------------------------------------------------------------
initial
begin : main
$display(" -= Testbench for modexp started =-");
$display(" =================================");
$display("");
init_sim();
dump_dut_state();
reset_dut();
dump_dut_state();
tc1();
tc2();
tc3();
autogenerated_BASIC_33bit();
autogenerated_BASIC_128bit();
// e65537_64bit_modulus();
// e65537_128bit_modulus();
// e65537_256bit_modulus();
display_test_results();
$display("");
$display("*** modexp simulation done. ***");
$finish;
end // main
endmodule // tb_modexp
//======================================================================
// EOF tb_modexp.v
//======================================================================