//======================================================================
//
// modexp.v
// --------
// Modular exponentiation core for implementing public key algorithms
// such as RSA, DH, ElGamal etc.
//
// The core calculates the following function:
//
// C = M ** e mod N
//
// M is a message with a length of n bits
// e is the exponent with a length of at most 32 bits
// N is the modulus with a length of n bits
// n is can be 32 and up to and including 8192 bits in steps
// of 32 bits.
//
// The core has a 32-bit memory like interface, but provides
// status signals to inform the system that a given operation
// has is done. Additionally, any errors will also be asserted.
//
//
// Author: Peter Magnusson, Joachim Strombergson
// Copyright (c) 2015, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module modexp(
input wire clk,
input wire reset_n,
input wire cs,
input wire we,
input wire [11 : 0] address,
input wire [31 : 0] write_data,
output wire [31 : 0] read_data
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
localparam GENERAL_PREFIX = 4'h0;
localparam ADDR_NAME0 = 8'h00;
localparam ADDR_NAME1 = 8'h01;
localparam ADDR_VERSION = 8'h02;
localparam ADDR_MODSIZE = 8'h10;
localparam ADDR_EXPONENT = 8'h20;
localparam MODULUS_PREFIX = 4'h1;
localparam ADDR_MODULUS_START = 8'h00;
localparam ADDR_MODULUS_END = 8'hff;
localparam EXPONENT_PREFIX = 4'h2;
localparam ADDR_EXPONENT_START = 8'h00;
localparam ADDR_EXPONENT_END = 8'hff;
localparam MESSAGE_PREFIX = 4'h3;
localparam MESSAGE_START = 8'h00;
localparam MESSAGE_END = 8'hff;
localparam RESULT_PREFIX = 4'h4;
localparam RESULT_START = 8'h00;
localparam RESULT_END = 8'hff;
localparam LENGTH_PREFIX = 4'h5;
localparam DEFAULT_MODLENGTH = 8'h80;
localparam DEFAULT_EXPLENGTH = 8'h80;
localparam MONTPROD_SELECT_ONE_NR = 3'h0;
localparam MONTPROD_SELECT_X_NR = 3'h1;
localparam MONTPROD_SELECT_Z_P = 3'h2;
localparam MONTPROD_SELECT_P_P = 3'h3;
localparam MONTPROD_SELECT_ONE_Z = 3'h4;
localparam MONTPROD_DEST_Z = 2'b00;
localparam MONTPROD_DEST_P = 2'b01;
localparam MONTPROD_DEST_NOWHERE = 2'b10;
localparam CTRL_IDLE = 4'h0;
localparam CTRL_RESIDUE = 4'h1;
localparam CTRL_CALCULATE_Z0 = 4'h2;
localparam CTRL_CALCULATE_P0 = 4'h3;
localparam CTRL_ITERATE = 4'h4;
localparam CTRL_ITERATE_Z_P = 4'h5;
localparam CTRL_ITERATE_P_P = 4'h6;
localparam CTRL_ITERATE_END = 4'h7;
localparam CTRL_CALCULATE_ZN = 4'h8;
localparam CTRL_DONE = 4'h9;
localparam CORE_NAME0 = 32'h72736120; // "rsa "
localparam CORE_NAME1 = 32'h38313932; // "8192"
localparam CORE_VERSION = 32'h302e3031; // "0.01"
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [07 : 0] modulus_mem_int_rd_addr;
wire [31 : 0] modulus_mem_int_rd_data;
wire [31 : 0] modulus_mem_api_rd_data;
reg modulus_mem_api_we;
reg [07 : 0] message_mem_int_rd_addr;
wire [31 : 0] message_mem_int_rd_data;
wire [31 : 0] message_mem_api_rd_data;
reg message_mem_api_we;
reg [07 : 0] exponent_mem_int_rd_addr;
wire [31 : 0] exponent_mem_int_rd_data;
wire [31 : 0] exponent_mem_api_rd_data;
reg exponent_mem_api_we;
wire [31 : 0] result_mem_api_rd_data;
reg [07 : 0] result_mem_int_rd_addr;
wire [31 : 0] result_mem_int_rd_data;
reg [07 : 0] result_mem_int_wr_addr;
reg [31 : 0] result_mem_int_wr_data;
reg result_mem_int_we;
reg residue_calculator_start; //TODO not implemented yet
reg residue_calculator_ready; //TODO not implemented yet
reg [31 : 0] residue_mem [0 : 255];
reg [07 : 0] residue_mem_rd_addr;
wire [31 : 0] residue_mem_rd_data;
reg [07 : 0] residue_mem_wr_addr;
reg [31 : 0] residue_mem_wr_data;
reg residue_mem_we;
reg [07 : 0] p_mem_rd0_addr;
wire [31 : 0] p_mem_rd0_data;
reg [07 : 0] p_mem_rd1_addr;
wire [31 : 0] p_mem_rd1_data;
reg [07 : 0] p_mem_wr_addr;
reg [31 : 0] p_mem_wr_data;
reg p_mem_we;
reg [07 : 0] length_reg;
reg [07 : 0] length_m1_reg;
reg [07 : 0] length_new;
reg [07 : 0] length_m1_new;
reg length_we;
reg start_reg;
reg start_new;
reg start_we;
reg ready_reg;
reg ready_new;
reg ready_we;
reg [2 : 0] montprod_select_reg;
reg [2 : 0] montprod_select_new;
reg montprod_select_we;
reg [1 : 0] montprod_dest_reg;
reg [1 : 0] montprod_dest_new;
reg [1 : 0] montprod_dest_we;
reg [3 : 0] modexp_ctrl_reg;
reg [3 : 0] modexp_ctrl_new;
reg modexp_ctrl_we;
reg [31 : 0] one;
reg [31 : 0] one_new;
reg [12 : 0] loop_counter_reg;
reg [12 : 0] loop_counter_new;
reg [12 : 0] loop_counter_we;
reg [07 : 0] E_word_index;
reg [04 : 0] E_bit_index;
reg last_iteration;
reg ei_reg;
reg ei_new;
reg ei_we;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
reg [31 : 0] tmp_read_data;
reg tmp_error;
reg montprod_calc;
wire montprod_ready;
reg [07 : 0] montprod_length;
wire [07 : 0] montprod_opa_addr;
reg [31 : 0] montprod_opa_data;
wire [07 : 0] montprod_opb_addr;
reg [31 : 0] montprod_opb_data;
wire [07 : 0] montprod_opm_addr;
reg [31 : 0] montprod_opm_data;
wire [07 : 0] montprod_result_addr;
wire [31 : 0] montprod_result_data;
wire montprod_result_we;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign read_data = tmp_read_data;
//----------------------------------------------------------------
// core instantiations.
//----------------------------------------------------------------
montprod montprod_inst(
.clk(clk),
.reset_n(reset_n),
.calculate(montprod_calc),
.ready(montprod_ready),
.length(montprod_length),
.opa_addr(montprod_opa_addr),
.opa_data(montprod_opa_data),
.opb_addr(montprod_opb_addr),
.opb_data(montprod_opb_data),
.opm_addr(montprod_opm_addr),
.opm_data(message_mem_int_rd_data),
.result_addr(montprod_result_addr),
.result_data(montprod_result_data),
.result_we(montprod_result_we)
);
blockmem2r1w modulus_mem(
.clk(clk),
.read_addr0(modulus_mem_int_rd_addr),
.read_data0(modulus_mem_int_rd_data),
.read_addr1(address[7 : 0]),
.read_data1(modulus_mem_api_rd_data),
.wr(modulus_mem_api_we),
.write_addr(address[7 : 0]),
.write_data(write_data)
);
blockmem2r1w message_mem(
.clk(clk),
.read_addr0(message_mem_int_rd_addr),
.read_data0(message_mem_int_rd_data),
.read_addr1(address[7 : 0]),
.read_data1(message_mem_api_rd_data),
.wr(message_mem_api_we),
.write_addr(address[7 : 0]),
.write_data(write_data)
);
blockmem2r1w exponent_mem(
.clk(clk),
.read_addr0(exponent_mem_int_rd_addr),
.read_data0(exponent_mem_int_rd_data),
.read_addr1(address[7 : 0]),
.read_data1(exponent_mem_api_rd_data),
.wr(exponent_mem_api_we),
.write_addr(address[7 : 0]),
.write_data(write_data)
);
blockmem2r1w result_mem(
.clk(clk),
.read_addr0(result_mem_int_rd_addr[7 : 0]),
.read_data0(result_mem_int_rd_data),
.read_addr1(address[7 : 0]),
.read_data1(result_mem_api_rd_data),
.wr(result_mem_int_we),
.write_addr(result_mem_int_wr_addr),
.write_data(result_mem_int_wr_data)
);
blockmem2r1w p_mem(
.clk(clk),
.read_addr0(p_mem_rd0_addr),
.read_data0(p_mem_rd0_data),
.read_addr1(p_mem_rd1_addr),
.read_data1(p_mem_rd1_data),
.wr(p_mem_we),
.write_addr(p_mem_wr_addr),
.write_data(p_mem_wr_data)
);
//----------------------------------------------------------------
// reg_update
//
// Update functionality for all registers in the core.
// All registers are positive edge triggered with asynchronous
// active low reset. All registers have write enable.
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin
if (!reset_n)
begin
ready_reg <= 1'b1;
montprod_select_reg <= MONTPROD_SELECT_ONE_NR;
montprod_dest_reg <= MONTPROD_DEST_NOWHERE;
modexp_ctrl_reg <= CTRL_IDLE;
one <= 32'h0;
length_reg <= 8'h0;
length_m1_reg <= 8'h0;
loop_counter_reg <= 13'b0;
ei_reg <= 1'b0;
end
else
begin
if (ready_we)
ready_reg <= ready_new;
if (montprod_select_we)
montprod_select_reg <= montprod_select_new;
if (montprod_dest_we)
montprod_dest_reg <= montprod_dest_new;
if (modexp_ctrl_we)
modexp_ctrl_reg <= modexp_ctrl_new;
if (length_we)
begin
length_reg <= length_new;
length_m1_reg <= length_m1_new;
end
if (loop_counter_we)
loop_counter_reg <= loop_counter_new;
if (ei_we)
ei_reg <= ei_new;
one <= one_new;
end
end // reg_update
//----------------------------------------------------------------
// api
//
// The interface command decoding logic.
//----------------------------------------------------------------
always @*
begin : api
modulus_mem_api_we = 1'b0;
exponent_mem_api_we = 1'b0;
message_mem_api_we = 1'b0;
tmp_read_data = 32'h00000000;
length_new = write_data[7 : 0];
length_m1_new = write_data[7 : 0] - 8'h1;
length_we = 1'b0;
if (cs)
begin
case (address[11 : 8])
GENERAL_PREFIX:
begin
// if (we)
// begin
// case (address)
// // Write operations.
// ADDR_MODSIZE:
// begin
// modsize_we = 1;
// end
//
// ADDR_EXPONENT:
// begin
// exponent_we = 1;
// end
//
// default:
// begin
// tmp_error = 1;
// end
// endcase // case (addr)
// end // if (write_read)
// else
// begin
// case (address)
// // Read operations.
// ADDR_NAME0:
// begin
// tmp_read_data = CORE_NAME0;
// end
//
// ADDR_NAME1:
// begin
// tmp_read_data = CORE_NAME1;
// end
//
// ADDR_VERSION:
// begin
// tmp_read_data = CORE_VERSION;
// end
//
// ADDR_MODSIZE:
// begin
// tmp_read_data = {28'h0000000, modsize_reg};
// end
//
// default:
// begin
// tmp_error = 1;
// end
// endcase // case (addr)
// end
end
MODULUS_PREFIX:
begin
if (we)
begin
modulus_mem_api_we = 1'b1;
end
else
begin
tmp_read_data = modulus_mem_api_rd_data;
end
end
EXPONENT_PREFIX:
begin
if (we)
begin
exponent_mem_api_we = 1'b1;
end
else
begin
tmp_read_data = exponent_mem_api_rd_data;
end
end
MESSAGE_PREFIX:
begin
if (we)
begin
message_mem_api_we = 1'b1;
end
else
begin
tmp_read_data = message_mem_api_rd_data;
end
end
RESULT_PREFIX:
begin
tmp_read_data = result_mem_api_rd_data;
end
LENGTH_PREFIX:
begin
if (we)
length_we = 1'b1;
end
// RESULT_PREFIX:
// begin
// if (we)
// begin
// modulus_mem_api_we = 1'b1;
// end
// else
// begin
// tmp_read_data = modulus_mem_int_rd_data;
// end
// end
default:
begin
end
endcase // case (address[11 : 8])
end // if (cs)
end // api
//----------------------------------------------------------------
// montprod_op_select
//
// Select operands used during montprod calculations depending
// on what operation we want to do
//----------------------------------------------------------------
always @*
begin : montprod_op_select
message_mem_int_rd_addr = montprod_opa_addr;
p_mem_rd0_addr = montprod_opa_addr;
residue_mem_rd_addr = montprod_opb_addr;
p_mem_rd1_addr = montprod_opb_addr;
modulus_mem_int_rd_addr = montprod_opm_addr;
montprod_opa_data = 32'h00000000;
montprod_opb_data = 32'h00000000;
if (montprod_opa_addr == length_m1_reg)
one_new = 32'h00000001;
else
one_new = 32'h00000000;
case (montprod_select_reg)
MONTPROD_SELECT_ONE_NR:
begin
montprod_opa_data = one;
montprod_opb_data = residue_mem_rd_data;
end
MONTPROD_SELECT_X_NR:
begin
montprod_opa_data = message_mem_int_rd_data;
montprod_opb_data = residue_mem_rd_data;
end
MONTPROD_SELECT_Z_P:
begin
montprod_opa_data = result_mem_int_rd_data;
montprod_opb_data = p_mem_rd1_data;
end
MONTPROD_SELECT_P_P:
begin
montprod_opa_data = p_mem_rd0_data;
montprod_opb_data = p_mem_rd1_data;
end
MONTPROD_SELECT_ONE_Z:
begin
montprod_opa_data = one;
montprod_opb_data = result_mem_int_rd_data;
end
default:
begin
end
endcase // case (montprod_selcect_reg)
end
//----------------------------------------------------------------
// memory write mux
//
// direct memory write signals to correct memory
//----------------------------------------------------------------
always @*
begin : memory_write_process
result_mem_int_wr_addr = montprod_result_addr;
result_mem_int_wr_data = montprod_result_data;
result_mem_int_we = 1'b0;
p_mem_wr_addr = montprod_result_addr;
p_mem_wr_data = montprod_result_data;
p_mem_we = 1'b0;
case (montprod_dest_reg)
MONTPROD_DEST_Z:
result_mem_int_we = montprod_result_we;
MONTPROD_DEST_P:
p_mem_we = montprod_result_we;
default:
begin
end
endcase
// inhibit Z=Z*P when ei = 0
if (modexp_ctrl_reg == CTRL_ITERATE_Z_P)
result_mem_int_we = result_mem_int_we & ei_reg;
end
//----------------------------------------------------------------
// loop_counter
//
// Calculate the loop counter and related variables
//----------------------------------------------------------------
always @*
begin : loop_counters_process
E_bit_index = loop_counter_reg[ 04 : 0 ];
if (loop_counter_reg == { length_m1_reg, 5'b11111 })
last_iteration = 1'b1;
else
last_iteration = 1'b0;
case (modexp_ctrl_reg)
CTRL_CALCULATE_P0:
begin
loop_counter_new = 13'b0;
loop_counter_we = 1'b1;
end
CTRL_ITERATE_END:
begin
loop_counter_new = loop_counter_reg + 1'b1;
loop_counter_we = 1'b1;
end
default:
begin
loop_counter_new = 13'b0;
loop_counter_we = 1'b0;
end
endcase
end
//----------------------------------------------------------------
// exponent
//
// reads the exponent
//----------------------------------------------------------------
always @*
begin : exponent_process
// accessing new instead of reg - pick up update at CTRL_ITERATE_NEW to remove a pipeline stall
E_word_index = loop_counter_new[ 12 : 5 ];
exponent_mem_int_rd_addr = E_word_index;
ei_new = exponent_mem_int_rd_data[ E_bit_index ];
if (modexp_ctrl_reg == CTRL_ITERATE)
ei_we = 1'b1;
else
ei_we = 1'b0;
end
//----------------------------------------------------------------
// modexp_ctrl
//
// Control FSM logic needed to perform the modexp operation.
//----------------------------------------------------------------
always @*
begin
ready_new = 0;
ready_we = 0;
montprod_select_new = MONTPROD_SELECT_ONE_NR;
montprod_select_we = 0;
montprod_dest_new = MONTPROD_DEST_NOWHERE;
montprod_dest_we = 0;
montprod_calc = 0;
modexp_ctrl_new = CTRL_IDLE;
modexp_ctrl_we = 0;
residue_calculator_start = 1'b0;
case (modexp_ctrl_reg)
CTRL_IDLE:
begin
ready_new = 0;
ready_we = 1;
if (start_reg == 1'b1)
begin
modexp_ctrl_new = CTRL_RESIDUE;
modexp_ctrl_we = 1;
residue_calculator_start = 1'b1;
end
end
CTRL_RESIDUE:
begin
if (residue_calculator_ready == 1'b1)
begin
montprod_select_new = MONTPROD_SELECT_ONE_NR;
montprod_select_we = 1;
montprod_dest_new = MONTPROD_DEST_Z;
montprod_dest_we = 1;
montprod_calc = 1;
modexp_ctrl_new = CTRL_CALCULATE_Z0;
modexp_ctrl_we = 1;
end
end
CTRL_CALCULATE_Z0:
begin
if (montprod_ready == 1'b1)
begin
montprod_select_new = MONTPROD_SELECT_X_NR;
montprod_select_we = 1;
montprod_dest_new = MONTPROD_DEST_P;
montprod_dest_we = 1;
montprod_calc = 1;
modexp_ctrl_new = CTRL_CALCULATE_P0;
modexp_ctrl_we = 1;
end
end
CTRL_CALCULATE_P0:
begin
if (montprod_ready == 1'b1)
begin
modexp_ctrl_new = CTRL_ITERATE;
modexp_ctrl_we = 1;
end
end
CTRL_ITERATE:
begin
montprod_select_new = MONTPROD_SELECT_Z_P;
montprod_select_we = 1;
montprod_dest_new = MONTPROD_DEST_Z;
montprod_dest_we = 1;
montprod_calc = 1;
modexp_ctrl_new = CTRL_ITERATE_Z_P;
modexp_ctrl_we = 1;
end
CTRL_ITERATE_Z_P:
if (montprod_ready == 1'b1)
begin
montprod_select_new = MONTPROD_SELECT_P_P;
montprod_select_we = 1;
montprod_dest_new = MONTPROD_DEST_P;
montprod_dest_we = 1;
montprod_calc = 1;
modexp_ctrl_new = CTRL_ITERATE_P_P;
modexp_ctrl_we = 1;
end
CTRL_ITERATE_P_P:
if (montprod_ready == 1'b1)
begin
modexp_ctrl_new = CTRL_ITERATE_END;
modexp_ctrl_we = 1;
end
CTRL_ITERATE_END:
begin
if (last_iteration == 1'b0)
begin
modexp_ctrl_new = CTRL_ITERATE;
modexp_ctrl_we = 1;
end
else
begin
montprod_select_new = MONTPROD_SELECT_ONE_Z;
montprod_select_we = 1;
montprod_calc = 1;
modexp_ctrl_new = CTRL_CALCULATE_ZN;
modexp_ctrl_we = 1;
end
end
CTRL_CALCULATE_ZN:
begin
if (montprod_ready == 1'b1)
begin
modexp_ctrl_new = CTRL_DONE;
modexp_ctrl_we = 1;
end
end
CTRL_DONE:
begin
ready_new = 1;
ready_we = 1;
modexp_ctrl_new = CTRL_IDLE;
modexp_ctrl_we = 1;
end
default:
begin
end
endcase // case (modexp_ctrl_reg)
end
endmodule // modexp
//======================================================================
// EOF modexp.v
//======================================================================