1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
//------------------------------------------------------------------------------
//
// ecdsa256_modular_multiplier.v
// -----------------------------------------------------------------------------
// Modular multiplier for P-256 prime.
//
// Authors: Pavel Shatov
//
// Copyright (c) 2015-2016, 2018 NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
module ecdsa256_modular_multiplier
(
clk, rst_n,
ena, rdy,
a_addr, b_addr, p_addr, p_wren,
a_din, b_din, p_dout
);
//
// Settings
//
`include "cryptech_primitive_switch.vh"
//
// Constants
//
localparam OPERAND_NUM_WORDS = 8;
localparam WORD_COUNTER_WIDTH = 3;
//
// Handy Numbers
//
localparam [WORD_COUNTER_WIDTH-1:0] WORD_INDEX_ZERO = 0;
localparam [WORD_COUNTER_WIDTH-1:0] WORD_INDEX_LAST = OPERAND_NUM_WORDS - 1;
//
// Handy Functions
//
function [WORD_COUNTER_WIDTH-1:0] WORD_INDEX_NEXT_OR_ZERO;
input [WORD_COUNTER_WIDTH-1:0] WORD_INDEX_CURRENT;
begin
WORD_INDEX_NEXT_OR_ZERO = (WORD_INDEX_CURRENT < WORD_INDEX_LAST) ?
WORD_INDEX_CURRENT + 1'b1 : WORD_INDEX_ZERO;
end
endfunction
function [WORD_COUNTER_WIDTH-1:0] WORD_INDEX_PREVIOUS_OR_LAST;
input [WORD_COUNTER_WIDTH-1:0] WORD_INDEX_CURRENT;
begin
WORD_INDEX_PREVIOUS_OR_LAST = (WORD_INDEX_CURRENT > WORD_INDEX_ZERO) ?
WORD_INDEX_CURRENT - 1'b1 : WORD_INDEX_LAST;
end
endfunction
//
// Ports
//
input wire clk; // system clock
input wire rst_n; // active-low async reset
input wire ena; // enable input
output wire rdy; // ready output
output wire [WORD_COUNTER_WIDTH-1:0] a_addr; // index of current A word
output wire [WORD_COUNTER_WIDTH-1:0] b_addr; // index of current B word
output wire [WORD_COUNTER_WIDTH-1:0] p_addr; // index of current P word
output wire p_wren; // store current P word now
input wire [ 31:0] a_din; // A
input wire [ 31:0] b_din; // B
output wire [ 31:0] p_dout; // P = A * B mod N
//
// Word Indices
//
reg [WORD_COUNTER_WIDTH-1:0] index_a;
reg [WORD_COUNTER_WIDTH-1:0] index_b;
/* map registers to output ports */
assign a_addr = index_a;
assign b_addr = index_b;
//
// FSM
//
localparam FSM_SHREG_WIDTH = (1 * OPERAND_NUM_WORDS + 1) + (2 * OPERAND_NUM_WORDS + 1) + (2 * OPERAND_NUM_WORDS + 2) + (0 * OPERAND_NUM_WORDS + 2) + 1;
reg [FSM_SHREG_WIDTH-1:0] fsm_shreg;
assign rdy = fsm_shreg[0];
wire [1 * OPERAND_NUM_WORDS-1:0] fsm_shreg_inc_index_a = fsm_shreg[FSM_SHREG_WIDTH - (0 * OPERAND_NUM_WORDS + 1) : FSM_SHREG_WIDTH - (1 * OPERAND_NUM_WORDS + 0)];
wire [1 * OPERAND_NUM_WORDS-1:0] fsm_shreg_store_word_a = fsm_shreg[FSM_SHREG_WIDTH - (0 * OPERAND_NUM_WORDS + 2) : FSM_SHREG_WIDTH - (1 * OPERAND_NUM_WORDS + 1)];
wire [2 * OPERAND_NUM_WORDS-1:0] fsm_shreg_inc_index_b = fsm_shreg[FSM_SHREG_WIDTH - (1 * OPERAND_NUM_WORDS + 1) : FSM_SHREG_WIDTH - (3 * OPERAND_NUM_WORDS + 1)];
wire [2 * OPERAND_NUM_WORDS-2:0] fsm_shreg_store_si_msb = fsm_shreg[FSM_SHREG_WIDTH - (1 * OPERAND_NUM_WORDS + 2) : FSM_SHREG_WIDTH - (3 * OPERAND_NUM_WORDS + 1)];
wire [0 * OPERAND_NUM_WORDS-0:0] fsm_shreg_store_si_lsb = fsm_shreg[FSM_SHREG_WIDTH - (3 * OPERAND_NUM_WORDS + 2) : FSM_SHREG_WIDTH - (3 * OPERAND_NUM_WORDS + 2)];
wire [2 * OPERAND_NUM_WORDS-2:0] fsm_shreg_shift_si = fsm_shreg[FSM_SHREG_WIDTH - (3 * OPERAND_NUM_WORDS + 3) : FSM_SHREG_WIDTH - (5 * OPERAND_NUM_WORDS + 1)];
wire [0 * OPERAND_NUM_WORDS-0:0] fsm_shreg_mask_cw1_sum = fsm_shreg[FSM_SHREG_WIDTH - (3 * OPERAND_NUM_WORDS + 4) : FSM_SHREG_WIDTH - (3 * OPERAND_NUM_WORDS + 4)];
wire [2 * OPERAND_NUM_WORDS-1:0] fsm_shreg_store_c_word = fsm_shreg[FSM_SHREG_WIDTH - (3 * OPERAND_NUM_WORDS + 5) : FSM_SHREG_WIDTH - (5 * OPERAND_NUM_WORDS + 4)];
wire [0 * OPERAND_NUM_WORDS-0:0] fsm_shreg_reduce_start = fsm_shreg[FSM_SHREG_WIDTH - (5 * OPERAND_NUM_WORDS + 5) : FSM_SHREG_WIDTH - (5 * OPERAND_NUM_WORDS + 5)];
wire [0 * OPERAND_NUM_WORDS-0:0] fsm_shreg_reduce_stop = fsm_shreg[FSM_SHREG_WIDTH - (5 * OPERAND_NUM_WORDS + 6) : FSM_SHREG_WIDTH - (5 * OPERAND_NUM_WORDS + 6)];
wire inc_index_a = |fsm_shreg_inc_index_a;
wire store_word_a = |fsm_shreg_store_word_a;
wire inc_index_b = |fsm_shreg_inc_index_b;
wire clear_mac_ab = |fsm_shreg_inc_index_b;
wire shift_wide_a = |fsm_shreg_inc_index_b;
wire enable_mac_ab = |fsm_shreg_inc_index_b;
wire store_si_msb = |fsm_shreg_store_si_msb;
wire store_si_lsb = fsm_shreg_store_si_lsb;
wire shift_si = |fsm_shreg_shift_si;
wire mask_cw1_sum = fsm_shreg_mask_cw1_sum;
wire store_c_word = |fsm_shreg_store_c_word;
wire reduce_start = fsm_shreg_reduce_start;
wire reduce_stop = fsm_shreg_reduce_stop;
//
// FSM Logic
//
wire reduce_done;
always @(posedge clk or negedge rst_n)
//
if (rst_n == 1'b0)
//
fsm_shreg <= {{FSM_SHREG_WIDTH-1{1'b0}}, 1'b1};
//
else begin
//
if (rdy)
fsm_shreg <= {ena, {FSM_SHREG_WIDTH-2{1'b0}}, ~ena};
//
else if (!reduce_stop || reduce_done)
fsm_shreg <= {1'b0, fsm_shreg[FSM_SHREG_WIDTH-1:1]};
//
end
//
// Word Index Increment Logic
//
reg index_b_ff;
always @(posedge clk)
//
if (inc_index_b) index_b_ff <= ~index_b_ff;
else index_b_ff <= 1'b0;
always @(posedge clk)
//
if (rdy) begin
//
index_a <= WORD_INDEX_ZERO;
index_b <= WORD_INDEX_LAST;
//
end else begin
//
if (inc_index_a) index_a <= WORD_INDEX_NEXT_OR_ZERO(index_a);
if (inc_index_b && !index_b_ff) index_b <= WORD_INDEX_PREVIOUS_OR_LAST(index_b);
//
end
//
// Wide Operand Buffer
//
reg [255:0] buf_a_wide;
always @(posedge clk)
//
if (store_word_a)
buf_a_wide <= {buf_a_wide[16 +: 256 - 3 * 16], {a_din[15:0], a_din[31:16]}, buf_a_wide[256 - 2 * 16 +: 16]};
else if (shift_wide_a)
buf_a_wide <= {buf_a_wide[256-(16+1):0], buf_a_wide[256-16+:16]};
//
// Multiplier Array
//
wire mac_inhibit; // control signal to pause all accumulators
wire [46: 0] mac[0:15]; // outputs of all accumulators
reg [15: 0] mac_clear; // individual per-accumulator clear flag
assign mac_inhibit = ~enable_mac_ab;
always @(posedge clk)
//
if (!clear_mac_ab)
mac_clear <= {16{1'b1}};
else begin
if (mac_clear == {16{1'b1}})
mac_clear <= {{14{1'b0}}, 1'b1, {1'b0}};
else
mac_clear <= (mac_clear[15] == 1'b0) ? {mac_clear[14:0], 1'b0} : {16{1'b1}};
end
//
// Array of parallel multipliers
//
genvar i;
generate for (i=0; i<16; i=i+1)
begin : gen_mac_array
//
`CRYPTECH_PRIMITIVE_MAC16 mac16_inst
(
.clk (clk),
.ce (~mac_inhibit),
.clr (mac_clear[i]),
.a (buf_a_wide[16*i+:16]),
.b (index_b_ff ? b_din[15:0] : b_din[31:16]),
.s (mac[i])
);
//
end
endgenerate
//
// Intermediate Words
//
reg [47*(2*OPERAND_NUM_WORDS-1)-1:0] si_msb;
reg [47*(2*OPERAND_NUM_WORDS-0)-1:0] si_lsb;
wire [47*(2*OPERAND_NUM_WORDS-1)-1:0] si_msb_new;
wire [47*(2*OPERAND_NUM_WORDS-0)-1:0] si_lsb_new;
generate for (i=0; i<16; i=i+1)
begin : gen_si_lsb_new
assign si_lsb_new[47*i+:47] = mac[15-i];
end
endgenerate
generate for (i=1; i<16; i=i+1)
begin : gen_si_msb_new
assign si_msb_new[47*(15-i)+:47] = mac_clear[i] ? mac[i] : si_msb[47*(15-i)+:47];
end
endgenerate
always @(posedge clk) begin
//
if (shift_si) begin
si_msb <= {{2*47{1'b0}}, si_msb[15*47-1:2*47]};
si_lsb <= {si_msb[2*47-1:0], si_lsb[16*47-1:2*47]};
end else begin
if (store_si_msb)
si_msb <= si_msb_new;
if (store_si_lsb)
si_lsb <= si_lsb_new;
end
end
//
// Accumulators
//
wire [46: 0] add47_cw0_s;
wire [46: 0] add47_cw1_s;
//
// cw0, b, cw1, b
//
reg [30: 0] si_prev_dly;
reg [15: 0] si_next_dly;
always @(posedge clk)
//
if (shift_si)
si_prev_dly <= si_lsb[93:63];
else
si_prev_dly <= {31{1'b0}};
always @(posedge clk)
//
si_next_dly <= si_lsb[62:47];
wire [46: 0] add47_cw0_a = si_lsb[46:0];
wire [46: 0] add47_cw0_b = {{16{1'b0}}, si_prev_dly};
wire [46: 0] add47_cw1_a = add47_cw0_s;
wire [46: 0] add47_cw1_b = {{15{1'b0}}, si_next_dly, mask_cw1_sum ? {16{1'b0}} : {1'b0, add47_cw1_s[46:32]}};
`CRYPTECH_PRIMITIVE_ADD47 add47_cw0_inst
(
.clk (clk),
.a (add47_cw0_a),
.b (add47_cw0_b),
.s (add47_cw0_s)
);
`CRYPTECH_PRIMITIVE_ADD47 add47_cw1_inst
(
.clk (clk),
.a (add47_cw1_a),
.b (add47_cw1_b),
.s (add47_cw1_s)
);
//
// Full-Size Product
//
reg [WORD_COUNTER_WIDTH:0] bram_c_addr;
wire [WORD_COUNTER_WIDTH:0] reduce_c_addr;
wire [ 31:0] reduce_c_word;
always @(posedge clk)
//
if (store_c_word)
bram_c_addr <= bram_c_addr + 1'b1;
else
bram_c_addr <= {2*WORD_COUNTER_WIDTH{1'b0}};
bram_1rw_1ro_readfirst #
(
.MEM_WIDTH (32),
.MEM_ADDR_BITS (WORD_COUNTER_WIDTH + 1)
)
bram_c_inst
(
.clk (clk),
.a_addr (bram_c_addr),
.a_wr (store_c_word),
.a_in (add47_cw1_s[31:0]),
.a_out (),
.b_addr (reduce_c_addr),
.b_out (reduce_c_word)
);
//
// Reduction Stage
//
ecdsa256_modular_reductor mod_redc_inst
(
.clk (clk),
.rst_n (rst_n),
.ena (reduce_start),
.rdy (reduce_done),
.x_addr (reduce_c_addr),
.p_addr (p_addr),
.p_wren (p_wren),
.x_din (reduce_c_word),
.p_dout (p_dout)
);
endmodule
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------
|