/*
* sha3_driver_sample.c
* -------------------------------------------
* Demo program to test SHA-3 core in hardware
*
* Authors: Pavel Shatov
* Copyright (c) 2017, NORDUnet A/S
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Note, that the test program needs a custom bitstream without
* the core selector, where the DUT is at offset 0.
*/
// stm32 headers
#include <string.h>
#include "stm-init.h"
#include "stm-led.h"
#include "stm-fmc.h"
// locations of core registers
#define CORE_ADDR_NAME0 (0x00 << 2)
#define CORE_ADDR_NAME1 (0x01 << 2)
#define CORE_ADDR_VERSION (0x02 << 2)
#define CORE_ADDR_CONTROL (0x08 << 2)
#define CORE_ADDR_STATUS (0x09 << 2)
// control and status register bit maps
#define CORE_CONTROL_BIT_INIT 0x00000001
#define CORE_CONTROL_BIT_NEXT 0x00000002
#define CORE_STATUS_BIT_READY 0x00000001
#define CORE_STATUS_BIT_VALID 0x00000002
// locations of banks (operand buffers)
#define CORE_ADDR_BANK_BLOCK 0x200
#define CORE_ADDR_BANK_STATE 0x300
// sha-3 parameters
#define SHA3_STATE_BITS 1600
#define SHA3_STATE_BYTES (SHA3_STATE_BITS / 8)
#define SHA3_PADDING_SUFFIX 0x06
#define SHA3_PADDING_FINAL 0x80
#define SHA3_224_BLOCK_BITS 1152
#define SHA3_256_BLOCK_BITS 1088
#define SHA3_384_BLOCK_BITS 832
#define SHA3_512_BLOCK_BITS 576
#define SHA3_224_OUTPUT_BITS 224
#define SHA3_256_OUTPUT_BITS 256
#define SHA3_384_OUTPUT_BITS 384
#define SHA3_512_OUTPUT_BITS 512
/*
* test vectors - hashes of empty message
*
* https://en.wikipedia.org/wiki/SHA-3#Examples_of_SHA-3_variants
*
*/
#define SHA3_224_HASH_EMPTY_MSG \
{0x6b, 0x4e, 0x03, 0x42, 0x36, 0x67, 0xdb, 0xb7, \
0x3b, 0x6e, 0x15, 0x45, 0x4f, 0x0e, 0xb1, 0xab, \
0xd4, 0x59, 0x7f, 0x9a, 0x1b, 0x07, 0x8e, 0x3f, \
0x5b, 0x5a, 0x6b, 0xc7}
#define SHA3_256_HASH_EMPTY_MSG \
{0xa7, 0xff, 0xc6, 0xf8, 0xbf, 0x1e, 0xd7, 0x66, \
0x51, 0xc1, 0x47, 0x56, 0xa0, 0x61, 0xd6, 0x62, \
0xf5, 0x80,0xff, 0x4d, 0xe4, 0x3b, 0x49, 0xfa, \
0x82, 0xd8, 0x0a, 0x4b, 0x80, 0xf8, 0x43, 0x4a}
#define SHA3_384_HASH_EMPTY_MSG \
{0x0c, 0x63, 0xa7, 0x5b, 0x84, 0x5e, 0x4f, 0x7d, \
0x01, 0x10, 0x7d, 0x85, 0x2e, 0x4c, 0x24, 0x85, \
0xc5, 0x1a, 0x50, 0xaa, 0xaa, 0x94, 0xfc, 0x61, \
0x99, 0x5e, 0x71, 0xbb, 0xee, 0x98, 0x3a, 0x2a, \
0xc3, 0x71, 0x38, 0x31, 0x26, 0x4a, 0xdb, 0x47, \
0xfb, 0x6b, 0xd1, 0xe0, 0x58, 0xd5, 0xf0, 0x04}
#define SHA3_512_HASH_EMPTY_MSG \
{0xa6, 0x9f, 0x73, 0xcc, 0xa2, 0x3a, 0x9a, 0xc5, \
0xc8, 0xb5, 0x67, 0xdc, 0x18, 0x5a, 0x75, 0x6e, \
0x97, 0xc9, 0x82, 0x16, 0x4f, 0xe2, 0x58, 0x59, \
0xe0, 0xd1, 0xdc, 0xc1, 0x47, 0x5c, 0x80, 0xa6, \
0x15, 0xb2, 0x12, 0x3a, 0xf1, 0xf5, 0xf9, 0x4c, \
0x11, 0xe3, 0xe9, 0x40, 0x2c, 0x3a, 0xc5, 0x58, \
0xf5, 0x00, 0x19, 0x9d, 0x95, 0xb6, 0xd3, 0xe3, \
0x01, 0x75, 0x85, 0x86, 0x28, 0x1d, 0xcd, 0x26}
/*
* test vectors - hashes of short message "abc"
*
* https://www.di-mgt.com.au/sha_testvectors.html
*
*/
#define SHA3_224_HASH_SHORT_MSG \
{0xe6, 0x42, 0x82, 0x4c, 0x3f, 0x8c, 0xf2, 0x4a, \
0xd0, 0x92, 0x34, 0xee, 0x7d, 0x3c, 0x76, 0x6f, \
0xc9, 0xa3, 0xa5, 0x16, 0x8d, 0x0c, 0x94, 0xad, \
0x73, 0xb4, 0x6f, 0xdf}
#define SHA3_256_HASH_SHORT_MSG \
{0x3a, 0x98, 0x5d, 0xa7, 0x4f, 0xe2, 0x25, 0xb2, \
0x04, 0x5c, 0x17, 0x2d, 0x6b, 0xd3, 0x90, 0xbd, \
0x85, 0x5f, 0x08, 0x6e, 0x3e, 0x9d, 0x52, 0x5b, \
0x46, 0xbf, 0xe2, 0x45, 0x11, 0x43, 0x15, 0x32}
#define SHA3_384_HASH_SHORT_MSG \
{0xec, 0x01, 0x49, 0x82, 0x88, 0x51, 0x6f, 0xc9, \
0x26, 0x45, 0x9f, 0x58, 0xe2, 0xc6, 0xad, 0x8d, \
0xf9, 0xb4, 0x73, 0xcb, 0x0f, 0xc0, 0x8c, 0x25, \
0x96, 0xda, 0x7c, 0xf0, 0xe4, 0x9b, 0xe4, 0xb2, \
0x98, 0xd8, 0x8c, 0xea, 0x92, 0x7a, 0xc7, 0xf5, \
0x39, 0xf1, 0xed, 0xf2, 0x28, 0x37, 0x6d, 0x25}
#define SHA3_512_HASH_SHORT_MSG \
{0xb7, 0x51, 0x85, 0x0b, 0x1a, 0x57, 0x16, 0x8a, \
0x56, 0x93, 0xcd, 0x92, 0x4b, 0x6b, 0x09, 0x6e, \
0x08, 0xf6, 0x21, 0x82, 0x74, 0x44, 0xf7, 0x0d, \
0x88, 0x4f, 0x5d, 0x02, 0x40, 0xd2, 0x71, 0x2e, \
0x10, 0xe1, 0x16, 0xe9, 0x19, 0x2a, 0xf3, 0xc9, \
0x1a, 0x7e, 0xc5, 0x76, 0x47, 0xe3, 0x93, 0x40, \
0x57, 0x34, 0x0b, 0x4c, 0xf4, 0x08, 0xd5, 0xa5, \
0x65, 0x92, 0xf8, 0x27, 0x4e, 0xec, 0x53, 0xf0}
/*
* test vectors - hashes of long message (see below)
*
* https://csrc.nist.gov/Projects/Cryptographic-Standards-and-Guidelines/example-values
*
*/
#define SHA3_224_HASH_LONG_MSG \
{0x93, 0x76, 0x81, 0x6A, 0xBA, 0x50, 0x3F, 0x72, \
0xF9, 0x6C, 0xE7, 0xEB, 0x65, 0xAC, 0x09, 0x5D, \
0xEE, 0xE3, 0xBE, 0x4B, 0xF9, 0xBB, 0xC2, 0xA1, \
0xCB, 0x7E, 0x11, 0xE0}
#define SHA3_256_HASH_LONG_MSG \
{0x79, 0xF3, 0x8A, 0xDE, 0xC5, 0xC2, 0x03, 0x07, \
0xA9, 0x8E, 0xF7, 0x6E, 0x83, 0x24, 0xAF, 0xBF, \
0xD4, 0x6C, 0xFD, 0x81, 0xB2, 0x2E, 0x39, 0x73, \
0xC6, 0x5F, 0xA1, 0xBD, 0x9D, 0xE3, 0x17, 0x87}
#define SHA3_384_HASH_LONG_MSG \
{0x18, 0x81, 0xDE, 0x2C, 0xA7, 0xE4, 0x1E, 0xF9, \
0x5D, 0xC4, 0x73, 0x2B, 0x8F, 0x5F, 0x00, 0x2B, \
0x18, 0x9C, 0xC1, 0xE4, 0x2B, 0x74, 0x16, 0x8E, \
0xD1, 0x73, 0x26, 0x49, 0xCE, 0x1D, 0xBC, 0xDD, \
0x76, 0x19, 0x7A, 0x31, 0xFD, 0x55, 0xEE, 0x98, \
0x9F, 0x2D, 0x70, 0x50, 0xDD, 0x47, 0x3E, 0x8F}
#define SHA3_512_HASH_LONG_MSG \
{0xE7, 0x6D, 0xFA, 0xD2, 0x20, 0x84, 0xA8, 0xB1, \
0x46, 0x7F, 0xCF, 0x2F, 0xFA, 0x58, 0x36, 0x1B, \
0xEC, 0x76, 0x28, 0xED, 0xF5, 0xF3, 0xFD, 0xC0, \
0xE4, 0x80, 0x5D, 0xC4, 0x8C, 0xAE, 0xEC, 0xA8, \
0x1B, 0x7C, 0x13, 0xC3, 0x0A, 0xDF, 0x52, 0xA3, \
0x65, 0x95, 0x84, 0x73, 0x9A, 0x2D, 0xF4, 0x6B, \
0xE5, 0x89, 0xC5, 0x1C, 0xA1, 0xA4, 0xA8, 0x41, \
0x6D, 0xF6, 0x54, 0x5A, 0x1C, 0xE8, 0xBA, 0x00}
static const uint8_t hash_224_empty_msg[SHA3_224_OUTPUT_BITS / 8] = SHA3_224_HASH_EMPTY_MSG;
static const uint8_t hash_256_empty_msg[SHA3_256_OUTPUT_BITS / 8] = SHA3_256_HASH_EMPTY_MSG;
static const uint8_t hash_384_empty_msg[SHA3_384_OUTPUT_BITS / 8] = SHA3_384_HASH_EMPTY_MSG;
static const uint8_t hash_512_empty_msg[SHA3_512_OUTPUT_BITS / 8] = SHA3_512_HASH_EMPTY_MSG;
static const uint8_t hash_224_short_msg[SHA3_224_OUTPUT_BITS / 8] = SHA3_224_HASH_SHORT_MSG;
static const uint8_t hash_256_short_msg[SHA3_256_OUTPUT_BITS / 8] = SHA3_256_HASH_SHORT_MSG;
static const uint8_t hash_384_short_msg[SHA3_384_OUTPUT_BITS / 8] = SHA3_384_HASH_SHORT_MSG;
static const uint8_t hash_512_short_msg[SHA3_512_OUTPUT_BITS / 8] = SHA3_512_HASH_SHORT_MSG;
static const uint8_t hash_224_long_msg[SHA3_224_OUTPUT_BITS / 8] = SHA3_224_HASH_LONG_MSG;
static const uint8_t hash_256_long_msg[SHA3_256_OUTPUT_BITS / 8] = SHA3_256_HASH_LONG_MSG;
static const uint8_t hash_384_long_msg[SHA3_384_OUTPUT_BITS / 8] = SHA3_384_HASH_LONG_MSG;
static const uint8_t hash_512_long_msg[SHA3_512_OUTPUT_BITS / 8] = SHA3_512_HASH_LONG_MSG;
/* short message, will always fit in single block */
static const char msg_short[] = "abc";
/* long message, guaranteed to _not_ fit in one block */
static const char msg_long[] =
"\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3"
"\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3"
"\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3"
"\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3"
"\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3"
"\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3"
"\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3"
"\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3"
"\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3"
"\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3\xA3";
/*
* prototypes
*/
void toggle_yellow_led(void);
int test_sha3(const uint8_t *msg,
uint32_t num_msg_bytes,
uint32_t num_block_bits,
const uint8_t *hash,
uint32_t num_hash_bits);
void sha3_absorb(uint32_t *state,
uint32_t num_block_bytes,
uint32_t block_number);
/*
* test routine
*/
int main()
{
int ok;
stm_init();
fmc_init();
// turn on the green led
led_on(LED_GREEN);
led_off(LED_RED);
led_off(LED_YELLOW);
led_off(LED_BLUE);
// check, that core is present
uint32_t core_name0;
uint32_t core_name1;
uint32_t core_version;
fmc_read_32(CORE_ADDR_NAME0, &core_name0);
fmc_read_32(CORE_ADDR_NAME1, &core_name1);
fmc_read_32(CORE_ADDR_VERSION, &core_version);
// must be "sha3", " " [four spaces], "0.10"
if ((core_name0 != 0x73686133) ||
(core_name1 != 0x20202020) ||
(core_version != 0x302E3130))
{
led_off(LED_GREEN);
led_on(LED_RED);
while (1);
}
// repeat forever
while (1)
{
// fresh start
ok = 1;
// test with empty message
ok = ok && test_sha3(NULL, 0, SHA3_224_BLOCK_BITS, hash_224_empty_msg, SHA3_224_OUTPUT_BITS);
ok = ok && test_sha3(NULL, 0, SHA3_256_BLOCK_BITS, hash_256_empty_msg, SHA3_256_OUTPUT_BITS);
ok = ok && test_sha3(NULL, 0, SHA3_384_BLOCK_BITS, hash_384_empty_msg, SHA3_384_OUTPUT_BITS);
ok = ok && test_sha3(NULL, 0, SHA3_512_BLOCK_BITS, hash_512_empty_msg, SHA3_512_OUTPUT_BITS);
// test with the short message ("abc")
ok = ok && test_sha3((uint8_t *)msg_short, strlen(msg_short), SHA3_224_BLOCK_BITS, hash_224_short_msg, SHA3_224_OUTPUT_BITS);
ok = ok && test_sha3((uint8_t *)msg_short, strlen(msg_short), SHA3_256_BLOCK_BITS, hash_256_short_msg, SHA3_256_OUTPUT_BITS);
ok = ok && test_sha3((uint8_t *)msg_short, strlen(msg_short), SHA3_384_BLOCK_BITS, hash_384_short_msg, SHA3_384_OUTPUT_BITS);
ok = ok && test_sha3((uint8_t *)msg_short, strlen(msg_short), SHA3_512_BLOCK_BITS, hash_512_short_msg, SHA3_512_OUTPUT_BITS);
// test with the long message
ok = ok && test_sha3((uint8_t *)msg_long, strlen(msg_long), SHA3_224_BLOCK_BITS, hash_224_long_msg, SHA3_224_OUTPUT_BITS);
ok = ok && test_sha3((uint8_t *)msg_long, strlen(msg_long), SHA3_256_BLOCK_BITS, hash_256_long_msg, SHA3_256_OUTPUT_BITS);
ok = ok && test_sha3((uint8_t *)msg_long, strlen(msg_long), SHA3_384_BLOCK_BITS, hash_384_long_msg, SHA3_384_OUTPUT_BITS);
ok = ok && test_sha3((uint8_t *)msg_long, strlen(msg_long), SHA3_512_BLOCK_BITS, hash_512_long_msg, SHA3_512_OUTPUT_BITS);
// turn on the red led to indicate something went wrong
if (!ok)
{
led_off(LED_GREEN);
led_on(LED_RED);
}
// indicate, that we're alive doing something...
toggle_yellow_led();
}
}
int test_sha3(const uint8_t *msg,
uint32_t num_msg_bytes,
uint32_t num_block_bits,
const uint8_t *hash,
uint32_t num_hash_bits)
{
/* calculate digest of 'msg' and compare it against known reference 'hash' */
// counter
uint32_t i;
// buffer for input block, consists of 32-bit words to ease copying over FMC
uint32_t block32[SHA3_STATE_BYTES / 4];
// byte pointer, handy for storing one byte at a time
uint8_t *block = (uint8_t *)&block32;
// handy values
uint32_t num_block_bytes = num_block_bits >> 3; // /8
uint32_t num_hash_bytes = num_hash_bits >> 3; // /8
// counters
uint32_t block_number = 0; // number of blocks absorbed (we need this, because for the
// very first block we toggle the 'init' control bit, for all the
// subsequent blocks we toggle the 'next' bit)
uint32_t block_offset = 0; // current byte position in the input block (we need this to
// apply padding properly)
// first wipe entire input block...
for (i=0; i<(SHA3_STATE_BYTES / sizeof(uint32_t)); i++)
block32[i] = 0;
// ...then absorb all the bytes...
while (num_msg_bytes)
{
// store the next byte
block[block_offset] = msg[0];
msg++; // advance pointer
block_offset++; // increment block offset
num_msg_bytes--; // reduce remaining byte count
// check, whether we've already filled entire block
if (block_offset == num_block_bytes)
{
// absorb part of message accumulated in block
sha3_absorb(block32, num_block_bytes, block_number);
block_number++; // increment processed block count
block_offset = 0; // start filling a new block
}
}
// ...and finally apply padding
// Now do the required padding, block_offset points to the very first empty byte in block
// (there should be at least 1 empty byte now, because we would have processed completely
// filled block earlier while absorbing bytes).
/* Padding involves three steps:
*
* 1. Add "011" bit string (0x06) to the message ("01" is SHA-3 domain suffix, "1" is actual padding)
* 2. Add zero or more "0" bits until the message is exactly 1 bit short of full block
* 3. Add final "1" bit (0x80) to make the message length a multiple of block size
*
*/
// add "011" part
block[block_offset] = SHA3_PADDING_SUFFIX;
// wipe all the remaining bytes in block (if there are any)
while (block_offset < (num_block_bytes - 1))
{
block_offset++;
block[block_offset] = 0x00;
}
// add the final "1" part. note, that we must use |=, not just =,
// because we could have added no extra null bytes and state[block_offset]
// might already contain the suffix, we should not overwrite it.
block[block_offset] |= SHA3_PADDING_FINAL;
// absorb the last block with padding
sha3_absorb(block32, num_block_bytes, block_number);
// read state from core...
for (i=0; i<(num_hash_bytes / sizeof(uint32_t)); i++)
fmc_read_32(CORE_ADDR_BANK_STATE + i * sizeof(uint32_t), block32 + i);
// ...and now compare state to known good hash
for (i=0; i<num_hash_bytes; i++)
if (block[i] != hash[i]) return 0;
// everything went just fine
return 1;
}
//
// absorb one block of data into the sponge
//
void sha3_absorb(uint32_t *block, uint32_t num_block_bytes, uint32_t block_number)
{
uint32_t i; // word counter
uint32_t ctrl, sts; // control register, status register
// copy 32-bit words from state into core's input block buffer
for (i=0; i<(num_block_bytes / sizeof(uint32_t)); i++)
fmc_write_32(CORE_ADDR_BANK_BLOCK + i * sizeof(uint32_t), block + i);
// note, that the very first block needs special handling: 'init' bit copies
// input block into core's state, 'next' bit xor's current core's state with input block
// block has enough space for entire core state, lower words are filled with
// message and upper words remain zeroes. When the very first block is absorbed
// into the sponge, we need to initialize *all* the core's state bits, because the
// upper part of core's state may contain leftovers from previously absorbed data.
// for subsequent blocks we don't need to copy the upper null part of block into the input
// bank, because we've already filled it with zeroes for the very first block
if (block_number == 0)
{
for (; i<(SHA3_STATE_BYTES / sizeof(uint32_t)); i++)
fmc_write_32(CORE_ADDR_BANK_BLOCK + i * sizeof(uint32_t), block + i);
}
// CONTROL = 0
ctrl = 0;
fmc_write_32(CORE_ADDR_CONTROL, &ctrl);
// determine what control bit to set ('init' for the very first block,
// 'next' for all the subsequent blocks)
ctrl = (block_number > 0) ? CORE_CONTROL_BIT_NEXT : CORE_CONTROL_BIT_INIT;
fmc_write_32(CORE_ADDR_CONTROL, &ctrl);
// wait for 'valid' bit to be set
sts = 0;
while (!(sts & CORE_STATUS_BIT_VALID))
fmc_read_32(CORE_ADDR_STATUS, &sts);
}
//
// toggle the yellow led to indicate that we're not stuck somewhere
//
void toggle_yellow_led(void)
{
static int led_state = 0;
led_state = !led_state;
if (led_state) led_on(LED_YELLOW);
else led_off(LED_YELLOW);
}
//
// end of file
//