//======================================================================
//
// sha256_w_mem_reg.v
// -----------------
// The W memory. This includes functionality to expand the
// block into 64 23-bit words.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2013 Secworks Sweden AB
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module sha256_w_mem(
input wire clk,
input wire reset_n,
input wire init,
input wire [511 : 0] block,
input wire [5 : 0] addr,
output wire ready,
output wire [31 : 0] w
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
parameter SHA256_ROUNDS = 63;
parameter CTRL_IDLE = 0;
parameter CTRL_UPDATE = 1;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [31 : 0] w_mem [0 : 63];
reg w_mem_we;
reg w0_w15_we;
reg [5 : 0] w_ctr_reg;
reg [5 : 0] w_ctr_new;
reg w_ctr_we;
reg w_ctr_inc;
reg w_ctr_set;
reg [1 : 0] sha256_w_mem_ctrl_reg;
reg [1 : 0] sha256_w_mem_ctrl_new;
reg sha256_w_mem_ctrl_we;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
reg [31 : 0] w_tmp;
reg [31 : 0] w_new;
reg [5 : 0] w_addr;
reg [31 : 0] d1;
reg [31 : 0] d0;
reg [31 : 0] w_7;
reg [31 : 0] w_16;
reg w_init;
reg w_update;
reg ready_tmp;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign w = w_tmp;
assign ready = ready_tmp;
//----------------------------------------------------------------
// reg_update
//
// Update functionality for all registers in the core.
// All registers are positive edge triggered with synchronous
// active low reset. All registers have write enable.
//----------------------------------------------------------------
always @ (posedge clk)
begin : reg_update
if (!reset_n)
begin
w_ctr_reg <= 6'h00;
sha256_w_mem_ctrl_reg <= CTRL_IDLE;
end
else
begin
if (w0_w15_we)
begin
w_mem[00] <= block[511 : 480];
w_mem[01] <= block[479 : 448];
w_mem[02] <= block[447 : 416];
w_mem[03] <= block[415 : 384];
w_mem[04] <= block[383 : 352];
w_mem[05] <= block[351 : 320];
w_mem[06] <= block[319 : 288];
w_mem[07] <= block[287 : 256];
w_mem[08] <= block[255 : 224];
w_mem[09] <= block[223 : 192];
w_mem[10] <= block[191 : 160];
w_mem[11] <= block[159 : 128];
w_mem[12] <= block[127 : 96];
w_mem[13] <= block[95 : 64];
w_mem[14] <= block[63 : 32];
w_mem[15] <= block[31 : 0];
end
if (w_mem_we)
begin
w_mem[w_addr] <= w_new;
end
if (w_ctr_we)
begin
w_ctr_reg <= w_ctr_new;
end
if (sha256_w_mem_ctrl_we)
begin
sha256_w_mem_ctrl_reg <= sha256_w_mem_ctrl_new;
end
end
end // reg_update
//----------------------------------------------------------------
// external_addr_mux
//
// Mux for the external read operation. This is where we exract
// the W variable.
//----------------------------------------------------------------
always @*
begin : external_addr_mux
w_tmp = w_mem[addr];
end // external_addr_mux
//----------------------------------------------------------------
// w_7_logic
//----------------------------------------------------------------
always @*
begin : w_7_logic
reg [5 : 0] w_7_addr;
w_7_addr = w_ctr_reg - 6'h07;
w_7 = w_mem[w_7_addr];
end // w_7_logic
//----------------------------------------------------------------
// w_16_logic
//----------------------------------------------------------------
always @*
begin : w_16_logic
reg [5 : 0] w_16_addr;
w_16_addr = w_ctr_reg - 6'h10;
w_16 = w_mem[w_16_addr];
end // w_16_logic
//----------------------------------------------------------------
// d0_logic
//----------------------------------------------------------------
always @*
begin : d0_logic
reg [31 : 0] w_15;
reg [5 : 0] w_15_addr;
w_15_addr = w_ctr_reg - 6'h0f;
w_15 = w_mem[w_15_addr];
d0 = {w_15[6 : 0], w_15[31 : 7]} ^
{w_15[17 : 0], w_15[31 : 18]} ^
{3'b000, w_15[31 : 3]};
end // d0_logic
//----------------------------------------------------------------
// d1_logic
//----------------------------------------------------------------
always @*
begin : d1_logic
reg [31 : 0] w_2;
reg [5 : 0] w_2_addr;
w_2_addr = w_ctr_reg - 6'h02;
w_2 = w_mem[w_2_addr];
d1 = {w_2[16 : 0], w_2[31 : 17]} ^
{w_2[18 : 0], w_2[31 : 19]} ^
{10'b0000000000, w_2[31 : 10]};
end // d1_logic
//----------------------------------------------------------------
// w_schedule
//----------------------------------------------------------------
always @*
begin : w_schedule
w0_w15_we = 0;
w_mem_we = 0;
w_addr = 0;
w_new = d1 + w_7 + d0 + w_16;
if (w_init)
begin
w0_w15_we = 1;
end
if (w_update)
begin
w_mem_we = 1;
w_addr = w_ctr_reg;
end // if (w_update)
end // w_schedule
//----------------------------------------------------------------
// w_ctr
//
// W schedule adress counter. Counts from 0x10 to 0x3f and
// is used to expand the block into words.
//----------------------------------------------------------------
always @*
begin : w_ctr
w_ctr_new = 0;
w_ctr_we = 0;
if (w_ctr_set)
begin
w_ctr_new = 6'h10;
w_ctr_we = 1;
end
if (w_ctr_inc)
begin
w_ctr_new = w_ctr_reg + 6'h01;
w_ctr_we = 1;
end
end // w_ctr
//----------------------------------------------------------------
// sha256_w_mem_fsm
//
// Logic for the w shedule FSM.
//----------------------------------------------------------------
always @*
begin : sha256_w_mem_fsm
w_ctr_set = 0;
w_ctr_inc = 0;
w_init = 0;
w_update = 0;
ready_tmp = 0;
sha256_w_mem_ctrl_new = CTRL_IDLE;
sha256_w_mem_ctrl_we = 0;
case (sha256_w_mem_ctrl_reg)
CTRL_IDLE:
begin
ready_tmp = 1;
if (init)
begin
w_init = 1;
w_ctr_set = 1;
sha256_w_mem_ctrl_new = CTRL_UPDATE;
sha256_w_mem_ctrl_we = 1;
end
end
CTRL_UPDATE:
begin
w_update = 1;
w_ctr_inc = 1;
if (w_ctr_reg == SHA256_ROUNDS)
begin
sha256_w_mem_ctrl_new = CTRL_IDLE;
sha256_w_mem_ctrl_we = 1;
end
end
endcase // case (sha256_ctrl_reg)
end // sha256_ctrl_fsm
endmodule // sha256_w_mem
//======================================================================
// EOF sha256_w_mem.v
//======================================================================