//======================================================================
//
// sha256_core.v
// -------------
// Verilog 2001 implementation of the SHA-256 hash function.
// This is the internal core with wide interfaces.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2014 SUNET
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module sha256_core(
input wire clk,
input wire reset_n,
input wire init,
input wire next,
input wire [511 : 0] block,
output wire ready,
output wire [255 : 0] digest,
output wire digest_valid
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
parameter H0_0 = 32'h6a09e667;
parameter H0_1 = 32'hbb67ae85;
parameter H0_2 = 32'h3c6ef372;
parameter H0_3 = 32'ha54ff53a;
parameter H0_4 = 32'h510e527f;
parameter H0_5 = 32'h9b05688c;
parameter H0_6 = 32'h1f83d9ab;
parameter H0_7 = 32'h5be0cd19;
parameter SHA256_ROUNDS = 63;
parameter CTRL_IDLE = 0;
parameter CTRL_ROUNDS = 1;
parameter CTRL_DONE = 2;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [31 : 0] a_reg;
reg [31 : 0] a_new;
reg [31 : 0] b_reg;
reg [31 : 0] b_new;
reg [31 : 0] c_reg;
reg [31 : 0] c_new;
reg [31 : 0] d_reg;
reg [31 : 0] d_new;
reg [31 : 0] e_reg;
reg [31 : 0] e_new;
reg [31 : 0] f_reg;
reg [31 : 0] f_new;
reg [31 : 0] g_reg;
reg [31 : 0] g_new;
reg [31 : 0] h_reg;
reg [31 : 0] h_new;
reg a_h_we;
reg [31 : 0] H0_reg;
reg [31 : 0] H0_new;
reg [31 : 0] H1_reg;
reg [31 : 0] H1_new;
reg [31 : 0] H2_reg;
reg [31 : 0] H2_new;
reg [31 : 0] H3_reg;
reg [31 : 0] H3_new;
reg [31 : 0] H4_reg;
reg [31 : 0] H4_new;
reg [31 : 0] H5_reg;
reg [31 : 0] H5_new;
reg [31 : 0] H6_reg;
reg [31 : 0] H6_new;
reg [31 : 0] H7_reg;
reg [31 : 0] H7_new;
reg H_we;
reg [5 : 0] t_ctr_reg;
reg [5 : 0] t_ctr_new;
reg t_ctr_we;
reg t_ctr_inc;
reg t_ctr_rst;
reg digest_valid_reg;
reg digest_valid_new;
reg digest_valid_we;
reg [1 : 0] sha256_ctrl_reg;
reg [1 : 0] sha256_ctrl_new;
reg sha256_ctrl_we;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
reg digest_init;
reg digest_update;
reg state_init;
reg state_update;
reg first_block;
reg ready_flag;
reg [31 : 0] t1;
reg [31 : 0] t2;
wire [31 : 0] k_data;
reg w_init;
wire w_ready;
wire [31 : 0] w_data;
//----------------------------------------------------------------
// Module instantiantions.
//----------------------------------------------------------------
sha256_k_constants k_constants(
.addr(t_ctr_reg),
.K(k_data)
);
sha256_w_mem w_mem(
.clk(clk),
.reset_n(reset_n),
.init(w_init),
.block(block),
.addr(t_ctr_reg),
.ready(w_ready),
.w(w_data)
);
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign ready = ready_flag;
assign digest = {H0_reg, H1_reg, H2_reg, H3_reg,
H4_reg, H5_reg, H6_reg, H7_reg};
assign digest_valid = digest_valid_reg;
//----------------------------------------------------------------
// reg_update
// Update functionality for all registers in the core.
// All registers are positive edge triggered with synchronous
// active low reset. All registers have write enable.
//----------------------------------------------------------------
always @ (posedge clk)
begin : reg_update
if (!reset_n)
begin
a_reg <= 32'h00000000;
b_reg <= 32'h00000000;
c_reg <= 32'h00000000;
d_reg <= 32'h00000000;
e_reg <= 32'h00000000;
f_reg <= 32'h00000000;
g_reg <= 32'h00000000;
h_reg <= 32'h00000000;
H0_reg <= 32'h00000000;
H1_reg <= 32'h00000000;
H2_reg <= 32'h00000000;
H3_reg <= 32'h00000000;
H4_reg <= 32'h00000000;
H5_reg <= 32'h00000000;
H6_reg <= 32'h00000000;
H7_reg <= 32'h00000000;
digest_valid_reg <= 0;
t_ctr_reg <= 6'b000000;
sha256_ctrl_reg <= CTRL_IDLE;
end
else
begin
if (a_h_we)
begin
a_reg <= a_new;
b_reg <= b_new;
c_reg <= c_new;
d_reg <= d_new;
e_reg <= e_new;
f_reg <= f_new;
g_reg <= g_new;
h_reg <= h_new;
end
if (H_we)
begin
H0_reg <= H0_new;
H1_reg <= H1_new;
H2_reg <= H2_new;
H3_reg <= H3_new;
H4_reg <= H4_new;
H5_reg <= H5_new;
H6_reg <= H6_new;
H7_reg <= H7_new;
end
if (t_ctr_we)
begin
t_ctr_reg <= t_ctr_new;
end
if (digest_valid_we)
begin
digest_valid_reg <= digest_valid_new;
end
if (sha256_ctrl_we)
begin
sha256_ctrl_reg <= sha256_ctrl_new;
end
end
end // reg_update
//----------------------------------------------------------------
// digest_logic
//
// The logic needed to init as well as update the digest.
//----------------------------------------------------------------
always @*
begin : digest_logic
H0_new = 32'h00000000;
H1_new = 32'h00000000;
H2_new = 32'h00000000;
H3_new = 32'h00000000;
H4_new = 32'h00000000;
H5_new = 32'h00000000;
H6_new = 32'h00000000;
H7_new = 32'h00000000;
H_we = 0;
if (digest_init)
begin
H0_new = H0_0;
H1_new = H0_1;
H2_new = H0_2;
H3_new = H0_3;
H4_new = H0_4;
H5_new = H0_5;
H6_new = H0_6;
H7_new = H0_7;
H_we = 1;
end
if (digest_update)
begin
H0_new = H0_reg + a_reg;
H1_new = H1_reg + b_reg;
H2_new = H2_reg + c_reg;
H3_new = H3_reg + d_reg;
H4_new = H4_reg + e_reg;
H5_new = H5_reg + f_reg;
H6_new = H6_reg + g_reg;
H7_new = H7_reg + h_reg;
H_we = 1;
end
end // digest_logic
//----------------------------------------------------------------
// t1_logic
//
// The logic for the T1 function.
//----------------------------------------------------------------
always @*
begin : t1_logic
reg [31 : 0] sum1;
reg [31 : 0] ch;
sum1 = {e_reg[5 : 0], e_reg[31 : 6]} ^
{e_reg[10 : 0], e_reg[31 : 11]} ^
{e_reg[24 : 0], e_reg[31 : 25]};
ch = (e_reg & f_reg) ^ ((~e_reg) & g_reg);
t1 = h_reg + sum1 + ch + w_data + k_data;
end // t1_logic
//----------------------------------------------------------------
// t2_logic
//
// The logic for the T2 function
//----------------------------------------------------------------
always @*
begin : t2_logic
reg [31 : 0] sum0;
reg [31 : 0] maj;
sum0 = {a_reg[1 : 0], a_reg[31 : 2]} ^
{a_reg[12 : 0], a_reg[31 : 13]} ^
{a_reg[21 : 0], a_reg[31 : 22]};
maj = (a_reg & b_reg) ^ (a_reg & c_reg) ^ (b_reg & c_reg);
t2 = sum0 + maj;
end // t2_logic
//----------------------------------------------------------------
// state_logic
//
// The logic needed to init as well as update the state during
// round processing.
//----------------------------------------------------------------
always @*
begin : state_logic
reg [31 : 0] tmp1;
reg [31 : 0] tmp2;
a_new = 32'h00000000;
b_new = 32'h00000000;
c_new = 32'h00000000;
d_new = 32'h00000000;
e_new = 32'h00000000;
f_new = 32'h00000000;
g_new = 32'h00000000;
h_new = 32'h00000000;
a_h_we = 0;
if (state_init)
begin
if (first_block)
begin
a_new = H0_0;
b_new = H0_1;
c_new = H0_2;
d_new = H0_3;
e_new = H0_4;
f_new = H0_5;
g_new = H0_6;
h_new = H0_7;
a_h_we = 1;
end
else
begin
a_new = H0_reg;
b_new = H1_reg;
c_new = H2_reg;
d_new = H3_reg;
e_new = H4_reg;
f_new = H5_reg;
g_new = H6_reg;
h_new = H7_reg;
a_h_we = 1;
end
end
if (state_update)
begin
a_new = t1 + t2;
b_new = a_reg;
c_new = b_reg;
d_new = c_reg;
e_new = d_reg + t1;
f_new = e_reg;
g_new = f_reg;
h_new = g_reg;
a_h_we = 1;
end
end // state_logic
//----------------------------------------------------------------
// t_ctr
// Update logic for the round counter, a monotonically
// increasing counter with reset.
//----------------------------------------------------------------
always @*
begin : t_ctr
t_ctr_new = 0;
t_ctr_we = 0;
if (t_ctr_rst)
begin
t_ctr_new = 0;
t_ctr_we = 1;
end
if (t_ctr_inc)
begin
t_ctr_new = t_ctr_reg + 1'b1;
t_ctr_we = 1;
end
end // t_ctr
//----------------------------------------------------------------
// sha256_ctrl_fsm
// Logic for the state machine controlling the core behaviour.
//----------------------------------------------------------------
always @*
begin : sha256_ctrl_fsm
digest_init = 0;
digest_update = 0;
state_init = 0;
state_update = 0;
first_block = 0;
ready_flag = 0;
w_init = 0;
t_ctr_inc = 0;
t_ctr_rst = 0;
digest_valid_new = 0;
digest_valid_we = 0;
sha256_ctrl_new = CTRL_IDLE;
sha256_ctrl_we = 0;
case (sha256_ctrl_reg)
CTRL_IDLE:
begin
ready_flag = 1;
if (init)
begin
digest_init = 1;
w_init = 1;
state_init = 1;
first_block = 1;
t_ctr_rst = 1;
digest_valid_new = 0;
digest_valid_we = 1;
sha256_ctrl_new = CTRL_ROUNDS;
sha256_ctrl_we = 1;
end
if (next)
begin
w_init = 1;
state_init = 1;
t_ctr_rst = 1;
digest_valid_new = 0;
digest_valid_we = 1;
sha256_ctrl_new = CTRL_ROUNDS;
sha256_ctrl_we = 1;
end
end
CTRL_ROUNDS:
begin
state_update = 1;
t_ctr_inc = 1;
if (t_ctr_reg == SHA256_ROUNDS)
begin
sha256_ctrl_new = CTRL_DONE;
sha256_ctrl_we = 1;
end
end
CTRL_DONE:
begin
digest_update = 1;
digest_valid_new = 1;
digest_valid_we = 1;
sha256_ctrl_new = CTRL_IDLE;
sha256_ctrl_we = 1;
end
endcase // case (sha256_ctrl_reg)
end // sha256_ctrl_fsm
endmodule // sha256_core
//======================================================================
// EOF sha256_core.v
//======================================================================