1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
|
//////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2011, Andrew "bunnie" Huang
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
// SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//////////////////////////////////////////////////////////////////////////////
// A simple I2C slave implementation. Oversampled for robustness.
// The slave is extended into the snoop & surpress version for the DDC bus;
// this is just a starting point for basic testing and also simple comms
// with the CPU.
//
// i2c slave module requires the top level module to implement the IOBs
// This is just to keep the tri-state easy to implemen across the hierarchy
//
// The code required on the top level is:
// IOBUF #(.DRIVE(12), .SLEW("SLOW")) IOBUF_sda (.IO(SDA), .I(1'b0), .T(!SDA_pd));
//
///////////
`timescale 1 ns / 1 ps
// This file is based on https://github.com/bunnie/novena-gpbb-fpga/blob/master/novena-gpbb.srcs/sources_1/imports/imports/i2c_slave.v
//
// For Cryptech, we replaced the register interface with the rxd/txd
// interface to coretest, and changed i2c_device_addr from an 8-bit
// input to a 7-bit output.
module i2c_core (
input wire clk,
input wire reset,
// External data interface
input wire SCL,
input wire SDA,
output reg SDA_pd,
output wire [6:0] i2c_device_addr,
// Internal receive interface.
output wire rxd_syn,
output [7 : 0] rxd_data,
input wire rxd_ack,
// Internal transmit interface.
input wire txd_syn,
input wire [7 : 0] txd_data,
output wire txd_ack
);
/////// I2C physical layer components
/// SDA is stable when SCL is high.
/// If SDA moves while SCL is high, this is considered a start or stop condition.
///
/// Otherwise, SDA can move around when SCL is low (this is where we suppress bits or
/// overdrive as needed). SDA is a wired-AND bus, so you only "drive" zero.
///
/// In an oversampled implementation, a rising and falling edge de-glitcher is needed
/// for SCL and SDA.
///
// rise fall time cycles computation:
// At 400kHz operation, 2.5us is a cycle. "chatter" from transition should be about
// 5% of total cycle time max (just rule of thumb), so 0.125us should be the equiv
// number of cycles.
// For the demo board, a 25 MHz clock is provided, and 0.125us ~ 4 cycles
// At 100kHz operation, 10us is a cycle, so 0.5us ~ 12 cycles
parameter TRF_CYCLES = 5'd4; // number of cycles for rise/fall time
////////////////
///// protocol-level state machine
////////////////
parameter I2C_START = 16'b1 << 0; // should only pass through this state for one cycle
parameter I2C_RESTART = 16'b1 << 1;
parameter I2C_DADDR = 16'b1 << 2;
parameter I2C_ACK_DADDR = 16'b1 << 3;
parameter I2C_WR_DATA = 16'b1 << 4;
parameter I2C_ACK_WR = 16'b1 << 5;
parameter I2C_END_WR = 16'b1 << 6;
parameter I2C_RD_DATA = 16'b1 << 7;
parameter I2C_ACK_RD = 16'b1 << 8;
parameter I2C_END_RD = 16'b1 << 9;
parameter I2C_END_RD2 = 16'b1 << 10;
parameter I2C_WAITSTOP = 16'b1 << 11;
parameter I2C_RXD_SYN = 16'b1 << 12;
parameter I2C_RXD_ACK = 16'b1 << 13;
parameter I2C_TXD_SYN = 16'b1 << 14;
parameter I2C_TXD_ACK = 16'b1 << 15;
parameter I2C_nSTATES = 16;
reg [(I2C_nSTATES-1):0] I2C_cstate = {{(I2C_nSTATES-1){1'b0}}, 1'b1}; //current and next states
reg [(I2C_nSTATES-1):0] I2C_nstate;
//`define SIMULATION
`ifdef SIMULATION
// synthesis translate_off
reg [8*20:1] I2C_state_ascii = "I2C_START ";
always @(I2C_cstate) begin
if (I2C_cstate == I2C_START) I2C_state_ascii <= "I2C_START ";
else if (I2C_cstate == I2C_RESTART) I2C_state_ascii <= "I2C_RESTART ";
else if (I2C_cstate == I2C_DADDR) I2C_state_ascii <= "I2C_DADDR ";
else if (I2C_cstate == I2C_ACK_DADDR) I2C_state_ascii <= "I2C_ACK_DADDR ";
else if (I2C_cstate == I2C_WR_DATA) I2C_state_ascii <= "I2C_WR_DATA ";
else if (I2C_cstate == I2C_ACK_WR) I2C_state_ascii <= "I2C_ACK_WR ";
else if (I2C_cstate == I2C_END_WR) I2C_state_ascii <= "I2C_END_WR ";
else if (I2C_cstate == I2C_RD_DATA) I2C_state_ascii <= "I2C_RD_DATA ";
else if (I2C_cstate == I2C_ACK_RD) I2C_state_ascii <= "I2C_ACK_RD ";
else if (I2C_cstate == I2C_END_RD) I2C_state_ascii <= "I2C_END_RD ";
else if (I2C_cstate == I2C_END_RD2) I2C_state_ascii <= "I2C_END_RD2 ";
else if (I2C_cstate == I2C_WAITSTOP) I2C_state_ascii <= "I2C_WAITSTOP ";
else if (I2C_cstate == I2C_RXD_SYN) I2C_state_ascii <= "I2C_RXD_SYN ";
else if (I2C_cstate == I2C_RXD_ACK) I2C_state_ascii <= "I2C_RXD_ACK ";
else if (I2C_cstate == I2C_TXD_SYN) I2C_state_ascii <= "I2C_TXD_SYN ";
else if (I2C_cstate == I2C_TXD_ACK) I2C_state_ascii <= "I2C_TXD_ACK ";
else I2C_state_ascii <= "WTF ";
end
// synthesis translate_on
`endif
reg [3:0] I2C_bitcnt;
reg [7:0] I2C_daddr;
reg [7:0] I2C_wdata;
reg [7:0] I2C_rdata;
reg rxd_syn_reg;
reg txd_ack_reg;
assign rxd_data = I2C_wdata;
assign rxd_syn = rxd_syn_reg;
assign txd_ack = txd_ack_reg;
assign i2c_device_addr = I2C_daddr[7:1];
////////// code begins here
always @ (posedge clk) begin
if (reset || ((SCL_cstate == SCL_HIGH) && (SDA_cstate == SDA_RISE))) // stop condition always resets
I2C_cstate <= I2C_START;
else
I2C_cstate <= I2C_nstate;
end
always @ (*) begin
case (I2C_cstate)
I2C_START: begin // wait for the start condition
I2C_nstate = ((SDA_cstate == SDA_FALL) && (SCL_cstate == SCL_HIGH)) ? I2C_DADDR : I2C_START;
end
I2C_RESTART: begin // repeated start moves immediately to DADDR
I2C_nstate = I2C_DADDR;
end
// device address branch
I2C_DADDR: begin // 8 bits to get the address
I2C_nstate = ((I2C_bitcnt > 4'h7) && (SCL_cstate == SCL_FALL)) ? I2C_ACK_DADDR : I2C_DADDR;
end
I2C_ACK_DADDR: begin // depending upon W/R bit state, go to one of two branches
I2C_nstate = (SCL_cstate == SCL_FALL) ?
(I2C_daddr[0] == 1'b0 ? I2C_WR_DATA : I2C_TXD_SYN) :
I2C_ACK_DADDR; // !SCL_FALL
end
// write branch
I2C_WR_DATA: begin // 8 bits to get the write data
I2C_nstate = ((SDA_cstate == SDA_FALL) && (SCL_cstate == SCL_HIGH)) ? I2C_RESTART : // repeated start
((I2C_bitcnt > 4'h7) && (SCL_cstate == SCL_FALL)) ? I2C_RXD_SYN : I2C_WR_DATA;
end
I2C_RXD_SYN: begin // put data on the coretest bus
I2C_nstate = I2C_RXD_ACK;
end
I2C_RXD_ACK: begin // wait for coretest ack
I2C_nstate = rxd_ack ? I2C_ACK_WR : I2C_RXD_ACK;
end
I2C_ACK_WR: begin // trigger the ack response (pull SDA low until next falling edge)
// and stay in this state until the next falling edge of SCL
I2C_nstate = (SCL_cstate == SCL_FALL) ? I2C_END_WR : I2C_ACK_WR;
end
I2C_END_WR: begin // one-cycle state to update address+1, reset SDA pulldown
I2C_nstate = I2C_WR_DATA; // SCL is now low
end
// read branch
I2C_TXD_SYN: begin // get data from the coretest bus
// if data isn't available (txd_syn isn't asserted) by the time we
// get to this state, it probably never will be, so skip it
I2C_nstate = txd_syn ? I2C_TXD_ACK : I2C_RD_DATA;
end
I2C_TXD_ACK: begin // send coretest ack
// hold ack high until syn is lowered
I2C_nstate = txd_syn ? I2C_TXD_ACK : I2C_RD_DATA;
end
I2C_RD_DATA: begin // 8 bits to get the read data
I2C_nstate = ((SDA_cstate == SDA_FALL) && (SCL_cstate == SCL_HIGH)) ? I2C_RESTART : // repeated start
((I2C_bitcnt > 4'h7) && (SCL_cstate == SCL_FALL)) ? I2C_ACK_RD : I2C_RD_DATA;
end
I2C_ACK_RD: begin // wait for an (n)ack response
// need to sample (n)ack on a rising edge
I2C_nstate = (SCL_cstate == SCL_RISE) ? I2C_END_RD : I2C_ACK_RD;
end
I2C_END_RD: begin // if nack, just go to start state (don't explicitly check stop event)
// single cycle state for adr+1 update
I2C_nstate = (SDA_cstate == SDA_LOW) ? I2C_END_RD2 : I2C_START;
end
I2C_END_RD2: begin // before entering I2C_RD_DATA, we need to have seen a falling edge.
I2C_nstate = (SCL_cstate == SCL_FALL) ? I2C_RD_DATA : I2C_END_RD2;
end
// we're not the addressed device, so we just idle until we see a stop
I2C_WAITSTOP: begin
I2C_nstate = (((SCL_cstate == SCL_HIGH) && (SDA_cstate == SDA_RISE))) ? // stop
I2C_START :
(((SCL_cstate == SCL_HIGH) && (SDA_cstate == SDA_FALL))) ? // or start
I2C_RESTART :
I2C_WAITSTOP;
end
endcase // case (cstate)
end
always @ (posedge clk) begin
if( reset ) begin
I2C_bitcnt <= 4'b0;
I2C_daddr <= 8'b0;
I2C_wdata <= 8'b0;
SDA_pd <= 1'b0;
I2C_rdata <= 8'b0;
end else begin
case (I2C_cstate)
I2C_START: begin // everything in reset
I2C_bitcnt <= 4'b0;
I2C_daddr <= 8'b0;
I2C_wdata <= 8'b0;
I2C_rdata <= 8'b0;
SDA_pd <= 1'b0;
end
I2C_RESTART: begin
I2C_bitcnt <= 4'b0;
I2C_daddr <= 8'b0;
I2C_wdata <= 8'b0;
I2C_rdata <= 8'b0;
SDA_pd <= 1'b0;
end
// get my i2c device address (am I being talked to?)
I2C_DADDR: begin // shift in the address on rising edges of clock
if( SCL_cstate == SCL_RISE ) begin
I2C_bitcnt <= I2C_bitcnt + 4'b1;
I2C_daddr[7] <= I2C_daddr[6];
I2C_daddr[6] <= I2C_daddr[5];
I2C_daddr[5] <= I2C_daddr[4];
I2C_daddr[4] <= I2C_daddr[3];
I2C_daddr[3] <= I2C_daddr[2];
I2C_daddr[2] <= I2C_daddr[1];
I2C_daddr[1] <= I2C_daddr[0];
I2C_daddr[0] <= (SDA_cstate == SDA_HIGH) ? 1'b1 : 1'b0;
end else begin // we're oversampled so we need a hold-state gutter
I2C_bitcnt <= I2C_bitcnt;
I2C_daddr <= I2C_daddr;
end // else: !if( SCL_cstate == SCL_RISE )
SDA_pd <= 1'b0;
I2C_wdata <= 8'b0;
I2C_rdata <= 8'b0;
end // case: I2C_DADDR
I2C_ACK_DADDR: begin
SDA_pd <= 1'b1; // active pull down ACK
I2C_daddr <= I2C_daddr;
I2C_bitcnt <= 4'b0;
I2C_wdata <= 8'b0;
I2C_rdata <= 8'b0;
end
// write branch
I2C_WR_DATA: begin // shift in data on rising edges of clock
if( SCL_cstate == SCL_RISE ) begin
I2C_bitcnt <= I2C_bitcnt + 4'b1;
I2C_wdata[7] <= I2C_wdata[6];
I2C_wdata[6] <= I2C_wdata[5];
I2C_wdata[5] <= I2C_wdata[4];
I2C_wdata[4] <= I2C_wdata[3];
I2C_wdata[3] <= I2C_wdata[2];
I2C_wdata[2] <= I2C_wdata[1];
I2C_wdata[1] <= I2C_wdata[0];
I2C_wdata[0] <= (SDA_cstate == SDA_HIGH) ? 1'b1 : 1'b0;
end else begin
I2C_bitcnt <= I2C_bitcnt; // hold state gutter
I2C_wdata <= I2C_wdata;
end // else: !if( SCL_cstate == SCL_RISE )
SDA_pd <= 1'b0;
I2C_daddr <= I2C_daddr;
I2C_rdata <= I2C_rdata;
end // case: I2C_WR_DATA
I2C_RXD_SYN: begin // put data on the coretest bus and raise syn
rxd_syn_reg <= 1;
end
I2C_RXD_ACK: begin // wait for coretest ack
if (rxd_ack)
rxd_syn_reg <= 0;
end
I2C_ACK_WR: begin
SDA_pd <= 1'b1; // active pull down ACK
I2C_daddr <= I2C_daddr;
I2C_bitcnt <= 4'b0;
I2C_wdata <= I2C_wdata;
I2C_rdata <= I2C_rdata;
end
I2C_END_WR: begin
SDA_pd <= 1'b0; // let SDA rise (host may look for this to know ack is done
I2C_bitcnt <= 4'b0;
I2C_wdata <= 8'b0;
I2C_rdata <= I2C_rdata;
I2C_daddr <= I2C_daddr;
end
// read branch
I2C_TXD_SYN: begin // get data from the coretest bus
if (txd_syn) begin
I2C_rdata <= txd_data;
txd_ack_reg <= 1;
end
end
I2C_TXD_ACK: begin // send coretest ack
if (!txd_syn)
txd_ack_reg <= 0;
end
I2C_RD_DATA: begin // shift out data on falling edges of clock
SDA_pd <= I2C_rdata[7] ? 1'b0 : 1'b1;
if( SCL_cstate == SCL_RISE ) begin
I2C_bitcnt <= I2C_bitcnt + 4'b1;
end else begin
I2C_bitcnt <= I2C_bitcnt; // hold state gutter
end
if( SCL_cstate == SCL_FALL ) begin
I2C_rdata[7] <= I2C_rdata[6];
I2C_rdata[6] <= I2C_rdata[5];
I2C_rdata[5] <= I2C_rdata[4];
I2C_rdata[4] <= I2C_rdata[3];
I2C_rdata[3] <= I2C_rdata[2];
I2C_rdata[2] <= I2C_rdata[1];
I2C_rdata[1] <= I2C_rdata[0];
I2C_rdata[0] <= 1'b0;
end else begin
I2C_rdata <= I2C_rdata;
end // else: !if( SCL_cstate == SCL_RISE )
I2C_daddr <= I2C_daddr;
I2C_wdata <= I2C_wdata;
end // case: I2C_RD_DATA
I2C_ACK_RD: begin
SDA_pd <= 1'b0; // in ack state don't pull down, we are listening to host
I2C_daddr <= I2C_daddr;
I2C_bitcnt <= 4'b0;
I2C_rdata <= I2C_rdata;
I2C_wdata <= I2C_wdata;
end
I2C_END_RD: begin
SDA_pd <= 1'b0; // let SDA rise (host may look for this to know ack is done
I2C_daddr <= I2C_daddr;
I2C_bitcnt <= 4'b0;
I2C_rdata <= I2C_rdata;
I2C_wdata <= I2C_wdata;
end
I2C_END_RD2: begin
SDA_pd <= 1'b0;
I2C_daddr <= 8'b0;
I2C_bitcnt <= 4'b0;
I2C_rdata <= I2C_rdata;
I2C_wdata <= I2C_wdata;
end
I2C_WAITSTOP: begin
SDA_pd <= 1'b0;
I2C_daddr <= 8'b0;
I2C_bitcnt <= 4'b0;
I2C_rdata <= I2C_rdata;
I2C_wdata <= I2C_wdata;
end
endcase // case (cstate)
end // else: !if( reset )
end // always @ (posedge clk or posedge reset)
///////////////////////////////////////////////////////////////
/////////// low level state machines //////////////////////////
///////////////////////////////////////////////////////////////
////////////////
///// SCL low-level sampling state machine
////////////////
parameter SCL_HIGH = 4'b1 << 0; // should only pass through this state for one cycle
parameter SCL_FALL = 4'b1 << 1;
parameter SCL_LOW = 4'b1 << 2;
parameter SCL_RISE = 4'b1 << 3;
parameter SCL_nSTATES = 4;
reg [(SCL_nSTATES-1):0] SCL_cstate = {{(SCL_nSTATES-1){1'b0}}, 1'b1}; //current and next states
reg [(SCL_nSTATES-1):0] SCL_nstate;
//`define SIMULATION
`ifdef SIMULATION
// synthesis translate_off
reg [8*20:1] SCL_state_ascii = "SCL_HIGH ";
always @(SCL_cstate) begin
if (SCL_cstate == SCL_HIGH) SCL_state_ascii <= "SCL_HIGH ";
else if (SCL_cstate == SCL_FALL) SCL_state_ascii <= "SCL_FALL ";
else if (SCL_cstate == SCL_LOW ) SCL_state_ascii <= "SCL_LOW ";
else if (SCL_cstate == SCL_RISE) SCL_state_ascii <= "SCL_RISE ";
else SCL_state_ascii <= "WTF ";
end
// synthesis translate_on
`endif
reg [4:0] SCL_rfcnt;
reg SCL_s, SCL_sync;
reg SDA_s, SDA_sync;
always @ (posedge clk) begin
if (reset)
SCL_cstate <= SCL_HIGH; // always start here even if it's wrong -- easier to test
else
SCL_cstate <= SCL_nstate;
end
always @ (*) begin
case (SCL_cstate)
SCL_HIGH: begin
SCL_nstate = ((SCL_rfcnt > TRF_CYCLES) && (SCL_sync == 1'b0)) ? SCL_FALL : SCL_HIGH;
end
SCL_FALL: begin
SCL_nstate = SCL_LOW;
end
SCL_LOW: begin
SCL_nstate = ((SCL_rfcnt > TRF_CYCLES) && (SCL_sync == 1'b1)) ? SCL_RISE : SCL_LOW;
end
SCL_RISE: begin
SCL_nstate = SCL_HIGH;
end
endcase // case (cstate)
end // always @ (*)
always @ (posedge clk) begin
if( reset ) begin
SCL_rfcnt <= 5'b0;
end else begin
case (SCL_cstate)
SCL_HIGH: begin
if( SCL_sync == 1'b1 ) begin
SCL_rfcnt <= 5'b0;
end else begin
SCL_rfcnt <= SCL_rfcnt + 5'b1;
end
end
SCL_FALL: begin
SCL_rfcnt <= 5'b0;
end
SCL_LOW: begin
if( SCL_sync == 1'b0 ) begin
SCL_rfcnt <= 5'b0;
end else begin
SCL_rfcnt <= SCL_rfcnt + 5'b1;
end
end
SCL_RISE: begin
SCL_rfcnt <= 5'b0;
end
endcase // case (cstate)
end // else: !if( reset )
end // always @ (posedge clk or posedge reset)
////////////////
///// SDA low-level sampling state machine
////////////////
parameter SDA_HIGH = 4'b1 << 0; // should only pass through this state for one cycle
parameter SDA_FALL = 4'b1 << 1;
parameter SDA_LOW = 4'b1 << 2;
parameter SDA_RISE = 4'b1 << 3;
parameter SDA_nSTATES = 4;
reg [(SDA_nSTATES-1):0] SDA_cstate = {{(SDA_nSTATES-1){1'b0}}, 1'b1}; //current and next states
reg [(SDA_nSTATES-1):0] SDA_nstate;
//`define SIMULATION
`ifdef SIMULATION
// synthesis translate_off
reg [8*20:1] SDA_state_ascii = "SDA_HIGH ";
always @(SDA_cstate) begin
if (SDA_cstate == SDA_HIGH) SDA_state_ascii <= "SDA_HIGH ";
else if (SDA_cstate == SDA_FALL) SDA_state_ascii <= "SDA_FALL ";
else if (SDA_cstate == SDA_LOW ) SDA_state_ascii <= "SDA_LOW ";
else if (SDA_cstate == SDA_RISE) SDA_state_ascii <= "SDA_RISE ";
else SDA_state_ascii <= "WTF ";
end
// synthesis translate_on
`endif
reg [4:0] SDA_rfcnt;
always @ (posedge clk) begin
if (reset)
SDA_cstate <= SDA_HIGH; // always start here even if it's wrong -- easier to test
else
SDA_cstate <= SDA_nstate;
end
always @ (*) begin
case (SDA_cstate)
SDA_HIGH: begin
SDA_nstate = ((SDA_rfcnt > TRF_CYCLES) && (SDA_sync == 1'b0)) ? SDA_FALL : SDA_HIGH;
end
SDA_FALL: begin
SDA_nstate = SDA_LOW;
end
SDA_LOW: begin
SDA_nstate = ((SDA_rfcnt > TRF_CYCLES) && (SDA_sync == 1'b1)) ? SDA_RISE : SDA_LOW;
end
SDA_RISE: begin
SDA_nstate = SDA_HIGH;
end
endcase // case (cstate)
end // always @ (*)
always @ (posedge clk) begin
if( reset ) begin
SDA_rfcnt <= 5'b0;
end else begin
case (SDA_cstate)
SDA_HIGH: begin
if( SDA_sync == 1'b1 ) begin
SDA_rfcnt <= 5'b0;
end else begin
SDA_rfcnt <= SDA_rfcnt + 5'b1;
end
end
SDA_FALL: begin
SDA_rfcnt <= 5'b0;
end
SDA_LOW: begin
if( SDA_sync == 1'b0 ) begin
SDA_rfcnt <= 5'b0;
end else begin
SDA_rfcnt <= SDA_rfcnt + 5'b1;
end
end
SDA_RISE: begin
SDA_rfcnt <= 5'b0;
end
endcase // case (cstate)
end // else: !if( reset )
end // always @ (posedge clk or posedge reset)
/////////////////////
/////// synchronizers
/////////////////////
always @ (posedge clk) begin
SCL_s <= SCL;
SCL_sync <= SCL_s;
SDA_s <= SDA;
SDA_sync <= SDA_s;
end // always @ (posedge clk or posedge reset)
endmodule // i2c_slave
|