//////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2011, Andrew "bunnie" Huang
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
// SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//////////////////////////////////////////////////////////////////////////////
// A simple I2C slave implementation. Oversampled for robustness.
// The slave is extended into the snoop & surpress version for the DDC bus;
// this is just a starting point for basic testing and also simple comms
// with the CPU.
//
// i2c slave module requires the top level module to implement the IOBs
// This is just to keep the tri-state easy to implemen across the hierarchy
//
// The code required on the top level is:
// IOBUF #(.DRIVE(12), .SLEW("SLOW")) IOBUF_sda (.IO(SDA), .I(1'b0), .T(!SDA_pd));
//
///////////
`timescale 1 ns / 1 ps
// This file is based on https://github.com/bunnie/novena-gpbb-fpga/blob/master/novena-gpbb.srcs/sources_1/imports/imports/i2c_slave.v
//
// For Cryptech, we replaced the register interface with the rxd/txd
// interface to coretest, and changed i2c_device_addr from an 8-bit
// input to a 7-bit output.
module i2c_core (
input wire clk,
input wire reset,
// External data interface
input wire SCL,
input wire SDA,
output reg SDA_pd,
output wire [6:0] i2c_device_addr,
// Internal receive interface.
output wire rxd_syn,
output [7 : 0] rxd_data,
input wire rxd_ack,
// Internal transmit interface.
input wire txd_syn,
input wire [7 : 0] txd_data,
output wire txd_ack
);
/////// I2C physical layer components
/// SDA is stable when SCL is high.
/// If SDA moves while SCL is high, this is considered a start or stop condition.
///
/// Otherwise, SDA can move around when SCL is low (this is where we suppress bits or
/// overdrive as needed). SDA is a wired-AND bus, so you only "drive" zero.
///
/// In an oversampled implementation, a rising and falling edge de-glitcher is needed
/// for SCL and SDA.
///
// rise fall time cycles computation:
// At 400kHz operation, 2.5us is a cycle. "chatter" from transition should be about
// 5% of total cycle time max (just rule of thumb), so 0.125us should be the equiv
// number of cycles.
// For the demo board, a 25 MHz clock is provided, and 0.125us ~ 4 cycles
// At 100kHz operation, 10us is a cycle, so 0.5us ~ 12 cycles
parameter TRF_CYCLES = 5'd4; // number of cycles for rise/fall time
////////////////
///// protocol-level state machine
////////////////
parameter I2C_START = 16'b1 << 0; // should only pass through this state for one cycle
parameter I2C_RESTART = 16'b1 << 1;
parameter I2C_DADDR = 16'b1 << 2;
parameter I2C_ACK_DADDR = 16'b1 << 3;
parameter I2C_WR_DATA = 16'b1 << 4;
parameter I2C_ACK_WR = 16'b1 << 5;
parameter I2C_END_WR = 16'b1 << 6;
parameter I2C_RD_DATA = 16'b1 << 7;
parameter I2C_ACK_RD = 16'b1 << 8;
parameter I2C_END_RD = 16'b1 << 9;
parameter I2C_END_RD2 = 16'b1 << 10;
parameter I2C_WAITSTOP = 16'b1 << 11;
parameter I2C_RXD_SYN = 16'b1 << 12;
parameter I2C_RXD_ACK = 16'b1 << 13;
parameter I2C_TXD_SYN = 16'b1 << 14;
parameter I2C_TXD_ACK = 16'b1 << 15;
parameter I2C_nSTATES = 16;
reg [(I2C_nSTATES-1):0] I2C_cstate = {{(I2C_nSTATES-1){1'b0}}, 1'b1}; //current and next states
reg [(I2C_nSTATES-1):0] I2C_nstate;
//`define SIMULATION
`ifdef SIMULATION
// synthesis translate_off
reg [8*20:1] I2C_state_ascii = "I2C_START ";
always @(I2C_cstate) begin
if (I2C_cstate == I2C_START) I2C_state_ascii <= "I2C_START ";
else if (I2C_cstate == I2C_RESTART) I2C_state_ascii <= "I2C_RESTART ";
else if (I2C_cstate == I2C_DADDR) I2C_state_ascii <= "I2C_DADDR ";
else if (I2C_cstate == I2C_ACK_DADDR) I2C_state_ascii <= "I2C_ACK_DADDR ";
else if (I2C_cstate == I2C_WR_DATA) I2C_state_ascii <= "I2C_WR_DATA ";
else if (I2C_cstate == I2C_ACK_WR) I2C_state_ascii <= "I2C_ACK_WR ";
else if (I2C_cstate == I2C_END_WR) I2C_state_ascii <= "I2C_END_WR ";
else if (I2C_cstate == I2C_RD_DATA) I2C_state_ascii <= "I2C_RD_DATA ";
else if (I2C_cstate == I2C_ACK_RD) I2C_state_ascii <= "I2C_ACK_RD ";
else if (I2C_cstate == I2C_END_RD) I2C_state_ascii <= "I2C_END_RD ";
else if (I2C_cstate == I2C_END_RD2) I2C_state_ascii <= "I2C_END_RD2 ";
else if (I2C_cstate == I2C_WAITSTOP) I2C_state_ascii <= "I2C_WAITSTOP ";
else if (I2C_cstate == I2C_RXD_SYN) I2C_state_ascii <= "I2C_RXD_SYN ";
else if (I2C_cstate == I2C_RXD_ACK) I2C_state_ascii <= "I2C_RXD_ACK ";
else if (I2C_cstate == I2C_TXD_SYN) I2C_state_ascii <= "I2C_TXD_SYN ";
else if (I2C_cstate == I2C_TXD_ACK) I2C_state_ascii <= "I2C_TXD_ACK ";
else I2C_state_ascii <= "WTF ";
end
// synthesis translate_on
`endif
reg [3:0] I2C_bitcnt;
reg [7:0] I2C_daddr;
reg [7:0] I2C_wdata;
reg [7:0] I2C_rdata;
reg rxd_syn_reg;
reg txd_ack_reg;
assign rxd_data = I2C_wdata;
assign rxd_syn = rxd_syn_reg;
assign txd_ack = txd_ack_reg;
assign i2c_device_addr = I2C_daddr[7:1];
////////// code begins here
always @ (posedge clk) begin
if (reset || ((SCL_cstate == SCL_HIGH) && (SDA_cstate == SDA_RISE))) // stop condition always resets
I2C_cstate <= I2C_START;
else
I2C_cstate <= I2C_nstate;
end
always @ (*) begin
case (I2C_cstate)
I2C_START: begin // wait for the start condition
I2C_nstate = ((SDA_cstate == SDA_FALL) && (SCL_cstate == SCL_HIGH)) ? I2C_DADDR : I2C_START;
end
I2C_RESTART: begin // repeated start moves immediately to DADDR
I2C_nstate = I2C_DADDR;
end
// device address branch
I2C_DADDR: begin // 8 bits to get the address
I2C_nstate = ((I2C_bitcnt > 4'h7) && (SCL_cstate == SCL_FALL)) ? I2C_ACK_DADDR : I2C_DADDR;
end
I2C_ACK_DADDR: begin // depending upon W/R bit state, go to one of two branches
I2C_nstate = (SCL_cstate == SCL_FALL) ?
(I2C_daddr[0] == 1'b0 ? I2C_WR_DATA : I2C_TXD_SYN) :
I2C_ACK_DADDR; // !SCL_FALL
end
// write branch
I2C_WR_DATA: begin // 8 bits to get the write data
I2C_nstate = ((SDA_cstate == SDA_FALL) && (SCL_cstate == SCL_HIGH)) ? I2C_RESTART : // repeated start
((I2C_bitcnt > 4'h7) && (SCL_cstate == SCL_FALL)) ? I2C_RXD_SYN : I2C_WR_DATA;
end
I2C_RXD_SYN: begin // put data on the coretest bus
I2C_nstate = I2C_RXD_ACK;
end
I2C_RXD_ACK: begin // wait for coretest ack
I2C_nstate = rxd_ack ? I2C_ACK_WR : I2C_RXD_ACK;
end
I2C_ACK_WR: begin // trigger the ack response (pull SDA low until next falling edge)
// and stay in this state until the next falling edge of SCL
I2C_nstate = (SCL_cstate == SCL_FALL) ? I2C_END_WR : I2C_ACK_WR;
end
I2C_END_WR: begin // one-cycle state to update address+1, reset SDA pulldown
I2C_nstate = I2C_WR_DATA; // SCL is now low
end
// read branch
I2C_TXD_SYN: begin // get data from the coretest bus
// if data isn't available (txd_syn isn't asserted) by the time we
// get to this state, it probably never will be, so skip it
I2C_nstate = txd_syn ? I2C_TXD_ACK : I2C_RD_DATA;
end
I2C_TXD_ACK: begin // send coretest ack
// hold ack high until syn is lowered
I2C_nstate = txd_syn ? I2C_TXD_ACK : I2C_RD_DATA;
end
I2C_RD_DATA: begin // 8 bits to get the read data
I2C_nstate = ((SDA_cstate == SDA_FALL) && (SCL_cstate == SCL_HIGH)) ? I2C_RESTART : // repeated start
((I2C_bitcnt > 4'h7) && (SCL_cstate == SCL_FALL)) ? I2C_ACK_RD : I2C_RD_DATA;
end
I2C_ACK_RD: begin // wait for an (n)ack response
// need to sample (n)ack on a rising edge
I2C_nstate = (SCL_cstate == SCL_RISE) ? I2C_END_RD : I2C_ACK_RD;
end
I2C_END_RD: begin // if nack, just go to start state (don't explicitly check stop event)
// single cycle state for adr+1 update
I2C_nstate = (SDA_cstate == SDA_LOW) ? I2C_END_RD2 : I2C_START;
end
I2C_END_RD2: begin // before entering I2C_RD_DATA, we need to have seen a falling edge.
I2C_nstate = (SCL_cstate == SCL_FALL) ? I2C_RD_DATA : I2C_END_RD2;
end
// we're not the addressed device, so we just idle until we see a stop
I2C_WAITSTOP: begin
I2C_nstate = (((SCL_cstate == SCL_HIGH) && (SDA_cstate == SDA_RISE))) ? // stop
I2C_START :
(((SCL_cstate == SCL_HIGH) && (SDA_cstate == SDA_FALL))) ? // or start
I2C_RESTART :
I2C_WAITSTOP;
end
endcase // case (cstate)
end
always @ (posedge clk) begin
if( reset ) begin
I2C_bitcnt <= 4'b0;
I2C_daddr <= 8'b0;
I2C_wdata <= 8'b0;
SDA_pd <= 1'b0;
I2C_rdata <= 8'b0;
end else begin
case (I2C_cstate)
I2C_START: begin // everything in reset
I2C_bitcnt <= 4'b0;
I2C_daddr <= 8'b0;
I2C_wdata <= 8'b0;
I2C_rdata <= 8'b0;
SDA_pd <= 1'b0;
end
I2C_RESTART: begin
I2C_bitcnt <= 4'b0;
I2C_daddr <= 8'b0;
I2C_wdata <= 8'b0;
I2C_rdata <= 8'b0;
SDA_pd <= 1'b0;
end
// get my i2c device address (am I being talked to?)
I2C_DADDR: begin // shift in the address on rising edges of clock
if( SCL_cstate == SCL_RISE ) begin
I2C_bitcnt <= I2C_bitcnt + 4'b1;
I2C_daddr[7] <= I2C_daddr[6];
I2C_daddr[6] <= I2C_daddr[5];
I2C_daddr[5] <= I2C_daddr[4];
I2C_daddr[4] <= I2C_daddr[3];
I2C_daddr[3] <= I2C_daddr[2];
I2C_daddr[2] <= I2C_daddr[1];
I2C_daddr[1] <= I2C_daddr[0];
I2C_daddr[0] <= (SDA_cstate == SDA_HIGH) ? 1'b1 : 1'b0;
end else begin // we're oversampled so we need a hold-state gutter
I2C_bitcnt <= I2C_bitcnt;
I2C_daddr <= I2C_daddr;
end // else: !if( SCL_cstate == SCL_RISE )
SDA_pd <= 1'b0;
I2C_wdata <= 8'b0;
I2C_rdata <= 8'b0;
end // case: I2C_DADDR
I2C_ACK_DADDR: begin
SDA_pd <= 1'b1; // active pull down ACK
I2C_daddr <= I2C_daddr;
I2C_bitcnt <= 4'b0;
I2C_wdata <= 8'b0;
I2C_rdata <= 8'b0;
end
// write branch
I2C_WR_DATA: begin // shift in data on rising edges of clock
if( SCL_cstate == SCL_RISE ) begin
I2C_bitcnt <= I2C_bitcnt + 4'b1;
I2C_wdata[7] <= I2C_wdata[6];
I2C_wdata[6] <= I2C_wdata[5];
I2C_wdata[5] <= I2C_wdata[4];
I2C_wdata[4] <= I2C_wdata[3];
I2C_wdata[3] <= I2C_wdata[2];
I2C_wdata[2] <= I2C_wdata[1];
I2C_wdata[1] <= I2C_wdata[0];
I2C_wdata[0] <= (SDA_cstate == SDA_HIGH) ? 1'b1 : 1'b0;
end else begin
I2C_bitcnt <= I2C_bitcnt; // hold state gutter
I2C_wdata <= I2C_wdata;
end // else: !if( SCL_cstate == SCL_RISE )
SDA_pd <= 1'b0;
I2C_daddr <= I2C_daddr;
I2C_rdata <= I2C_rdata;
end // case: I2C_WR_DATA
I2C_RXD_SYN: begin // put data on the coretest bus and raise syn
rxd_syn_reg <= 1;
end
I2C_RXD_ACK: begin // wait for coretest ack
if (rxd_ack)
rxd_syn_reg <= 0;
end
I2C_ACK_WR: begin
SDA_pd <= 1'b1; // active pull down ACK
I2C_daddr <= I2C_daddr;
I2C_bitcnt <= 4'b0;
I2C_wdata <= I2C_wdata;
I2C_rdata <= I2C_rdata;
end
I2C_END_WR: begin
SDA_pd <= 1'b0; // let SDA rise (host may look for this to know ack is done
I2C_bitcnt <= 4'b0;
I2C_wdata <= 8'b0;
I2C_rdata <= I2C_rdata;
I2C_daddr <= I2C_daddr;
end
// read branch
I2C_TXD_SYN: begin // get data from the coretest bus
if (txd_syn) begin
I2C_rdata <= txd_data;
txd_ack_reg <= 1;
end
end
I2C_TXD_ACK: begin // send coretest ack
if (!txd_syn)
txd_ack_reg <= 0;
end
I2C_RD_DATA: begin // shift out data on falling edges of clock
SDA_pd <= I2C_rdata[7] ? 1'b0 : 1'b1;
if( SCL_cstate == SCL_RISE ) begin
I2C_bitcnt <= I2C_bitcnt + 4'b1;
end else begin
I2C_bitcnt <= I2C_bitcnt; // hold state gutter
end
if( SCL_cstate == SCL_FALL ) begin
I2C_rdata[7] <= I2C_rdata[6];
I2C_rdata[6] <= I2C_rdata[5];
I2C_rdata[5] <= I2C_rdata[4];
I2C_rdata[4] <= I2C_rdata[3];
I2C_rdata[3] <= I2C_rdata[2];
I2C_rdata[2] <= I2C_rdata[1];
I2C_rdata[1] <= I2C_rdata[0];
I2C_rdata[0] <= 1'b0;
end else begin
I2C_rdata <= I2C_rdata;
end // else: !if( SCL_cstate == SCL_RISE )
I2C_daddr <= I2C_daddr;
I2C_wdata <= I2C_wdata;
end // case: I2C_RD_DATA
I2C_ACK_RD: begin
SDA_pd <= 1'b0; // in ack state don't pull down, we are listening to host
I2C_daddr <= I2C_daddr;
I2C_bitcnt <= 4'b0;
I2C_rdata <= I2C_rdata;
I2C_wdata <= I2C_wdata;
end
I2C_END_RD: begin
SDA_pd <= 1'b0; // let SDA rise (host may look for this to know ack is done
I2C_daddr <= I2C_daddr;
I2C_bitcnt <= 4'b0;
I2C_rdata <= I2C_rdata;
I2C_wdata <= I2C_wdata;
end
I2C_END_RD2: begin
SDA_pd <= 1'b0;
I2C_daddr <= 8'b0;
I2C_bitcnt <= 4'b0;
I2C_rdata <= I2C_rdata;
I2C_wdata <= I2C_wdata;
end
I2C_WAITSTOP: begin
SDA_pd <= 1'b0;
I2C_daddr <= 8'b0;
I2C_bitcnt <= 4'b0;
I2C_rdata <= I2C_rdata;
I2C_wdata <= I2C_wdata;
end
endcase // case (cstate)
end // else: !if( reset )
end // always @ (posedge clk or posedge reset)
///////////////////////////////////////////////////////////////
/////////// low level state machines //////////////////////////
///////////////////////////////////////////////////////////////
////////////////
///// SCL low-level sampling state machine
////////////////
parameter SCL_HIGH = 4'b1 << 0; // should only pass through this state for one cycle
parameter SCL_FALL = 4'b1 << 1;
parameter SCL_LOW = 4'b1 << 2;
parameter SCL_RISE = 4'b1 << 3;
parameter SCL_nSTATES = 4;
reg [(SCL_nSTATES-1):0] SCL_cstate = {{(SCL_nSTATES-1){1'b0}}, 1'b1}; //current and next states
reg [(SCL_nSTATES-1):0] SCL_nstate;
//`define SIMULATION
`ifdef SIMULATION
// synthesis translate_off
reg [8*20:1] SCL_state_ascii = "SCL_HIGH ";
always @(SCL_cstate) begin
if (SCL_cstate == SCL_HIGH) SCL_state_ascii <= "SCL_HIGH ";
else if (SCL_cstate == SCL_FALL) SCL_state_ascii <= "SCL_FALL ";
else if (SCL_cstate == SCL_LOW ) SCL_state_ascii <= "SCL_LOW ";
else if (SCL_cstate == SCL_RISE) SCL_state_ascii <= "SCL_RISE ";
else SCL_state_ascii <= "WTF ";
end
// synthesis translate_on
`endif
reg [4:0] SCL_rfcnt;
reg SCL_s, SCL_sync;
reg SDA_s, SDA_sync;
always @ (posedge clk) begin
if (reset)
SCL_cstate <= SCL_HIGH; // always start here even if it's wrong -- easier to test
else
SCL_cstate <= SCL_nstate;
end
always @ (*) begin
case (SCL_cstate)
SCL_HIGH: begin
SCL_nstate = ((SCL_rfcnt > TRF_CYCLES) && (SCL_sync == 1'b0)) ? SCL_FALL : SCL_HIGH;
end
SCL_FALL: begin
SCL_nstate = SCL_LOW;
end
SCL_LOW: begin
SCL_nstate = ((SCL_rfcnt > TRF_CYCLES) && (SCL_sync == 1'b1)) ? SCL_RISE : SCL_LOW;
end
SCL_RISE: begin
SCL_nstate = SCL_HIGH;
end
endcase // case (cstate)
end // always @ (*)
always @ (posedge clk) begin
if( reset ) begin
SCL_rfcnt <= 5'b0;
end else begin
case (SCL_cstate)
SCL_HIGH: begin
if( SCL_sync == 1'b1 ) begin
SCL_rfcnt <= 5'b0;
end else begin
SCL_rfcnt <= SCL_rfcnt + 5'b1;
end
end
SCL_FALL: begin
SCL_rfcnt <= 5'b0;
end
SCL_LOW: begin
if( SCL_sync == 1'b0 ) begin
SCL_rfcnt <= 5'b0;
end else begin
SCL_rfcnt <= SCL_rfcnt + 5'b1;
end
end
SCL_RISE: begin
SCL_rfcnt <= 5'b0;
end
endcase // case (cstate)
end // else: !if( reset )
end // always @ (posedge clk or posedge reset)
////////////////
///// SDA low-level sampling state machine
////////////////
parameter SDA_HIGH = 4'b1 << 0; // should only pass through this state for one cycle
parameter SDA_FALL = 4'b1 << 1;
parameter SDA_LOW = 4'b1 << 2;
parameter SDA_RISE = 4'b1 << 3;
parameter SDA_nSTATES = 4;
reg [(SDA_nSTATES-1):0] SDA_cstate = {{(SDA_nSTATES-1){1'b0}}, 1'b1}; //current and next states
reg [(SDA_nSTATES-1):0] SDA_nstate;
//`define SIMULATION
`ifdef SIMULATION
// synthesis translate_off
reg [8*20:1] SDA_state_ascii = "SDA_HIGH ";
always @(SDA_cstate) begin
if (SDA_cstate == SDA_HIGH) SDA_state_ascii <= "SDA_HIGH ";
else if (SDA_cstate == SDA_FALL) SDA_state_ascii <= "SDA_FALL ";
else if (SDA_cstate == SDA_LOW ) SDA_state_ascii <= "SDA_LOW ";
else if (SDA_cstate == SDA_RISE) SDA_state_ascii <= "SDA_RISE ";
else SDA_state_ascii <= "WTF ";
end
// synthesis translate_on
`endif
reg [4:0] SDA_rfcnt;
always @ (posedge clk) begin
if (reset)
SDA_cstate <= SDA_HIGH; // always start here even if it's wrong -- easier to test
else
SDA_cstate <= SDA_nstate;
end
always @ (*) begin
case (SDA_cstate)
SDA_HIGH: begin
SDA_nstate = ((SDA_rfcnt > TRF_CYCLES) && (SDA_sync == 1'b0)) ? SDA_FALL : SDA_HIGH;
end
SDA_FALL: begin
SDA_nstate = SDA_LOW;
end
SDA_LOW: begin
SDA_nstate = ((SDA_rfcnt > TRF_CYCLES) && (SDA_sync == 1'b1)) ? SDA_RISE : SDA_LOW;
end
SDA_RISE: begin
SDA_nstate = SDA_HIGH;
end
endcase // case (cstate)
end // always @ (*)
always @ (posedge clk) begin
if( reset ) begin
SDA_rfcnt <= 5'b0;
end else begin
case (SDA_cstate)
SDA_HIGH: begin
if( SDA_sync == 1'b1 ) begin
SDA_rfcnt <= 5'b0;
end else begin
SDA_rfcnt <= SDA_rfcnt + 5'b1;
end
end
SDA_FALL: begin
SDA_rfcnt <= 5'b0;
end
SDA_LOW: begin
if( SDA_sync == 1'b0 ) begin
SDA_rfcnt <= 5'b0;
end else begin
SDA_rfcnt <= SDA_rfcnt + 5'b1;
end
end
SDA_RISE: begin
SDA_rfcnt <= 5'b0;
end
endcase // case (cstate)
end // else: !if( reset )
end // always @ (posedge clk or posedge reset)
/////////////////////
/////// synchronizers
/////////////////////
always @ (posedge clk) begin
SCL_s <= SCL;
SCL_sync <= SCL_s;
SDA_s <= SDA;
SDA_sync <= SDA_s;
end // always @ (posedge clk or posedge reset)
endmodule // i2c_slave