1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
//======================================================================
//
// aes_key_mem.v
// -------------
// The AES key memort including round key generator.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2014, NORDUnet A/S
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module aes_key_mem(
input wire clk,
input wire reset_n,
input wire [255 : 0] key,
input wire keylen,
input wire init,
input wire [3 : 0] round,
output wire [127 : 0] round_key,
output wire ready,
output wire [31 : 0] sboxw,
input wire [31 : 0] new_sboxw
);
//----------------------------------------------------------------
// Parameters.
//----------------------------------------------------------------
localparam AES_128_BIT_KEY = 1'h0;
localparam AES_256_BIT_KEY = 1'h1;
localparam AES_128_NUM_ROUNDS = 4'ha;
localparam AES_256_NUM_ROUNDS = 4'he;
localparam CTRL_IDLE = 3'h0;
localparam CTRL_INIT = 3'h1;
localparam CTRL_GENERATE = 3'h2;
localparam CTRL_DONE = 3'h3;
//----------------------------------------------------------------
// Registers.
//----------------------------------------------------------------
reg [127 : 0] key_mem [0 : 14];
reg [127 : 0] key_mem_new;
reg key_mem_we;
reg [127 : 0] prev_key0_reg;
reg [127 : 0] prev_key0_new;
reg prev_key0_we;
reg [127 : 0] prev_key1_reg;
reg [127 : 0] prev_key1_new;
reg prev_key1_we;
reg [3 : 0] round_ctr_reg;
reg [3 : 0] round_ctr_new;
reg round_ctr_rst;
reg round_ctr_inc;
reg round_ctr_we;
reg [2 : 0] key_mem_ctrl_reg;
reg [2 : 0] key_mem_ctrl_new;
reg key_mem_ctrl_we;
reg ready_reg;
reg ready_new;
reg ready_we;
reg [7 : 0] rcon_reg;
reg [7 : 0] rcon_new;
reg rcon_we;
reg rcon_set;
reg rcon_next;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
reg [31 : 0] tmp_sboxw;
reg round_key_update;
reg [3 : 0] num_rounds;
reg [127 : 0] tmp_round_key;
//----------------------------------------------------------------
// Concurrent assignments for ports.
//----------------------------------------------------------------
assign round_key = tmp_round_key;
assign ready = ready_reg;
assign sboxw = tmp_sboxw;
//----------------------------------------------------------------
// reg_update
//
// Update functionality for all registers in the core.
// All registers are positive edge triggered with asynchronous
// active low reset. All registers have write enable.
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin: reg_update
integer i;
if (!reset_n)
begin
for (i = 0 ; i < 4 ; i = i + 1)
key_mem [i] <= 128'h0;
rcon_reg <= 8'h0;
ready_reg <= 1'b0;
round_ctr_reg <= 4'h0;
key_mem_ctrl_reg <= CTRL_IDLE;
end
else
begin
if (round_ctr_we)
round_ctr_reg <= round_ctr_new;
if (ready_we)
ready_reg <= ready_new;
if (rcon_we)
rcon_reg <= rcon_new;
if (key_mem_we)
key_mem[round_ctr_reg] <= key_mem_new;
if (prev_key0_we)
prev_key0_reg <= prev_key0_new;
if (prev_key1_we)
prev_key1_reg <= prev_key1_new;
if (key_mem_ctrl_we)
key_mem_ctrl_reg <= key_mem_ctrl_new;
end
end // reg_update
//----------------------------------------------------------------
// key_mem_read
//
// Combinational read port for the key memory.
//----------------------------------------------------------------
always @*
begin : key_mem_read
tmp_round_key = key_mem[round];
end // key_mem_read
//----------------------------------------------------------------
// round_key_gen
//
// The round key generator logic for AES-128 and AES-256.
//----------------------------------------------------------------
always @*
begin: round_key_gen
reg [31 : 0] w0, w1, w2, w3, w4, w5, w6, w7;
reg [31 : 0] k0, k1, k2, k3;
reg [31 : 0] rconw, rotstw, tw, trw;
// Default assignments.
key_mem_new = 128'h0;
key_mem_we = 1'b0;
prev_key0_new = 128'h0;
prev_key0_we = 1'b0;
prev_key1_new = 128'h0;
prev_key1_we = 1'b0;
k0 = 32'h0;
k1 = 32'h0;
k2 = 32'h0;
k3 = 32'h0;
rcon_set = 1'b1;
rcon_next = 1'b0;
// Extract words and calculate intermediate values.
// Perform rotation of sbox word etc.
w0 = prev_key0_reg[127 : 096];
w1 = prev_key0_reg[095 : 064];
w2 = prev_key0_reg[063 : 032];
w3 = prev_key0_reg[031 : 000];
w4 = prev_key1_reg[127 : 096];
w5 = prev_key1_reg[095 : 064];
w6 = prev_key1_reg[063 : 032];
w7 = prev_key1_reg[031 : 000];
rconw = {rcon_reg, 24'h0};
tmp_sboxw = w7;
rotstw = {new_sboxw[23 : 00], new_sboxw[31 : 24]};
trw = rotstw ^ rconw;
tw = new_sboxw;
// Generate the specific round keys.
if (round_key_update)
begin
rcon_set = 1'b0;
key_mem_we = 1'b1;
case (keylen)
AES_128_BIT_KEY:
begin
if (round_ctr_reg == 0)
begin
key_mem_new = key[255 : 128];
prev_key1_new = key[255 : 128];
prev_key1_we = 1'b1;
rcon_next = 1'b1;
end
else
begin
k0 = w4 ^ trw;
k1 = w5 ^ w4 ^ trw;
k2 = w6 ^ w5 ^ w4 ^ trw;
k3 = w7 ^ w6 ^ w5 ^ w4 ^ trw;
key_mem_new = {k0, k1, k2, k3};
prev_key1_new = {k0, k1, k2, k3};
prev_key1_we = 1'b1;
rcon_next = 1'b1;
end
end
AES_256_BIT_KEY:
begin
if (round_ctr_reg == 0)
begin
key_mem_new = key[255 : 128];
prev_key0_new = key[255 : 128];
prev_key0_we = 1'b1;
end
else if (round_ctr_reg == 1)
begin
key_mem_new = key[127 : 0];
prev_key1_new = key[127 : 0];
prev_key1_we = 1'b1;
rcon_next = 1'b1;
end
else
begin
if (round_ctr_reg[0] == 0)
begin
k0 = w0 ^ trw;
k1 = w1 ^ w0 ^ trw;
k2 = w2 ^ w1 ^ w0 ^ trw;
k3 = w3 ^ w2 ^ w1 ^ w0 ^ trw;
end
else
begin
k0 = w0 ^ tw;
k1 = w1 ^ w0 ^ tw;
k2 = w2 ^ w1 ^ w0 ^ tw;
k3 = w3 ^ w2 ^ w1 ^ w0 ^ tw;
rcon_next = 1'b1;
end
// Store the generated round keys.
key_mem_new = {k0, k1, k2, k3};
prev_key1_new = {k0, k1, k2, k3};
prev_key1_we = 1'b1;
prev_key0_new = prev_key1_reg;
prev_key0_we = 1'b1;
end
end
default:
begin
end
endcase // case (keylen)
end
end // round_key_gen
//----------------------------------------------------------------
// rcon_logic
//
// Caclulates the rcon value for the different key expansion
// iterations.
//----------------------------------------------------------------
always @*
begin : rcon_logic
reg [7 : 0] tmp_rcon;
rcon_new = 8'h00;
rcon_we = 1'b0;
tmp_rcon = {rcon_reg[6 : 0], 1'b0} ^ (8'h1b & {8{rcon_reg[7]}});
if (rcon_set)
begin
rcon_new = 8'h8d;
rcon_we = 1'b1;
end
if (rcon_next)
begin
rcon_new = tmp_rcon[7 : 0];
rcon_we = 1'b1;
end
end
//----------------------------------------------------------------
// round_ctr
//
// The round counter logic with increase and reset.
//----------------------------------------------------------------
always @*
begin : round_ctr
round_ctr_new = 4'h0;
round_ctr_we = 1'b0;
if (round_ctr_rst)
begin
round_ctr_new = 4'h0;
round_ctr_we = 1'b1;
end
else if (round_ctr_inc)
begin
round_ctr_new = round_ctr_reg + 1'b1;
round_ctr_we = 1'b1;
end
end
//----------------------------------------------------------------
// num_rounds_logic
//
// Logic to select the number of rounds to generate keys for
//----------------------------------------------------------------
always @*
begin : num_rounds_logic
num_rounds = 4'h0;
case (keylen)
AES_128_BIT_KEY:
begin
num_rounds = AES_128_NUM_ROUNDS;
end
AES_256_BIT_KEY:
begin
num_rounds = AES_256_NUM_ROUNDS;
end
default:
begin
end
endcase // case (keylen)
end
//----------------------------------------------------------------
// key_mem_ctrl
//
//
// The FSM that controls the round key generation.
//----------------------------------------------------------------
always @*
begin: key_mem_ctrl
// Default assignments.
ready_new = 1'b0;
ready_we = 1'b0;
round_key_update = 1'b0;
round_ctr_rst = 1'b0;
round_ctr_inc = 1'b0;
key_mem_ctrl_new = CTRL_IDLE;
key_mem_ctrl_we = 1'b0;
case(key_mem_ctrl_reg)
CTRL_IDLE:
begin
if (init)
begin
ready_new = 1'b0;
ready_we = 1'b1;
key_mem_ctrl_new = CTRL_INIT;
key_mem_ctrl_we = 1'b1;
end
end
CTRL_INIT:
begin
round_ctr_rst = 1'b1;
key_mem_ctrl_new = CTRL_GENERATE;
key_mem_ctrl_we = 1'b1;
end
CTRL_GENERATE:
begin
round_ctr_inc = 1'b1;
round_key_update = 1'b1;
if (round_ctr_reg == num_rounds)
begin
key_mem_ctrl_new = CTRL_DONE;
key_mem_ctrl_we = 1'b1;
end
end
CTRL_DONE:
begin
ready_new = 1'b1;
ready_we = 1'b1;
key_mem_ctrl_new = CTRL_IDLE;
key_mem_ctrl_we = 1'b1;
end
default:
begin
end
endcase // case (key_mem_ctrl_reg)
end // key_mem_ctrl
endmodule // aes_key_mem
//======================================================================
// EOF aes_key_mem.v
//======================================================================
|