1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
|
//======================================================================
//
// aes_encipher_block.v
// --------------------
// The AES encipher round. A pure combinational module that implements
// the initial round, main round and final round logic for
// enciper operations.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2014, SUNET
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module aes_encipher_block(
input wire clk,
input wire reset_n,
input wire next,
input wire keylen,
output wire [3 : 0] round,
input wire [127 : 0] round_key,
output wire [31 : 0] sboxw,
input wire [31 : 0] new_sboxw,
input wire [127 : 0] block,
output wire [127 : 0] new_block,
output wire ready
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
parameter AES_128_BIT_KEY = 1'h0;
parameter AES_256_BIT_KEY = 1'h1;
parameter AES128_ROUNDS = 4'ha;
parameter AES256_ROUNDS = 4'he;
parameter NO_UPDATE = 3'h0;
parameter INIT_UPDATE = 3'h1;
parameter SBOX_UPDATE = 3'h2;
parameter MAIN_UPDATE = 3'h3;
parameter FINAL_UPDATE = 3'h4;
parameter CTRL_IDLE = 3'h0;
parameter CTRL_INIT = 3'h1;
parameter CTRL_SBOX = 3'h2;
parameter CTRL_MAIN = 3'h3;
parameter CTRL_FINAL = 3'h4;
//----------------------------------------------------------------
// Round functions with sub functions.
//----------------------------------------------------------------
function [7 : 0] gm2(input [7 : 0] op);
begin
gm2 = {op[6 : 0], 1'b0} ^ (8'h1b & {8{op[7]}});
end
endfunction // gm2
function [7 : 0] gm3(input [7 : 0] op);
begin
gm3 = gm2(op) ^ op;
end
endfunction // gm3
function [31 : 0] mixw(input [31 : 0] w);
reg [7 : 0] b0, b1, b2, b3;
reg [7 : 0] mb0, mb1, mb2, mb3;
begin
b0 = w[31 : 24];
b1 = w[23 : 16];
b2 = w[15 : 08];
b3 = w[07 : 00];
mb0 = gm2(b0) ^ gm3(b1) ^ b2 ^ b3;
mb1 = b0 ^ gm2(b1) ^ gm3(b2) ^ b3;
mb2 = b0 ^ b1 ^ gm2(b2) ^ gm3(b3);
mb3 = gm3(b0) ^ b1 ^ b2 ^ gm2(b3);
mixw = {mb0, mb1, mb2, mb3};
end
endfunction // mixw
function [127 : 0] mixcolumns(input [127 : 0] data);
reg [31 : 0] w0, w1, w2, w3;
reg [31 : 0] ws0, ws1, ws2, ws3;
begin
w0 = data[127 : 096];
w1 = data[095 : 064];
w2 = data[063 : 032];
w3 = data[031 : 000];
ws0 = mixw(w0);
ws1 = mixw(w1);
ws2 = mixw(w2);
ws3 = mixw(w3);
mixcolumns = {ws0, ws1, ws2, ws3};
end
endfunction // mixcolumns
function [127 : 0] shiftrows(input [127 : 0] data);
reg [31 : 0] w0, w1, w2, w3;
reg [31 : 0] ws0, ws1, ws2, ws3;
begin
w0 = data[127 : 096];
w1 = data[095 : 064];
w2 = data[063 : 032];
w3 = data[031 : 000];
ws0 = {w0[31 : 24], w1[23 : 16], w2[15 : 08], w3[07 : 00]};
ws1 = {w1[31 : 24], w2[23 : 16], w3[15 : 08], w0[07 : 00]};
ws2 = {w2[31 : 24], w3[23 : 16], w0[15 : 08], w1[07 : 00]};
ws3 = {w3[31 : 24], w0[23 : 16], w1[15 : 08], w2[07 : 00]};
shiftrows = {ws0, ws1, ws2, ws3};
end
endfunction // shiftrows
function [127 : 0] addroundkey(input [127 : 0] data, input [127 : 0] rkey);
begin
addroundkey = data ^ rkey;
end
endfunction // addroundkey
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [1 : 0] sword_ctr_reg;
reg [1 : 0] sword_ctr_new;
reg sword_ctr_we;
reg sword_ctr_inc;
reg sword_ctr_rst;
reg [3 : 0] round_ctr_reg;
reg [3 : 0] round_ctr_new;
reg round_ctr_we;
reg round_ctr_rst;
reg round_ctr_inc;
reg [127 : 0] block_new;
reg [31 : 0] block_w0_reg;
reg [31 : 0] block_w1_reg;
reg [31 : 0] block_w2_reg;
reg [31 : 0] block_w3_reg;
reg block_w0_we;
reg block_w1_we;
reg block_w2_we;
reg block_w3_we;
reg ready_reg;
reg ready_new;
reg ready_we;
reg [2 : 0] enc_ctrl_reg;
reg [2 : 0] enc_ctrl_new;
reg enc_ctrl_we;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
reg [2 : 0] update_type;
reg [31 : 0] muxed_sboxw;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign round = round_ctr_reg;
assign sboxw = muxed_sboxw;
assign new_block = {block_w0_reg, block_w1_reg, block_w2_reg, block_w3_reg};
assign ready = ready_reg;
//----------------------------------------------------------------
// reg_update
//
// Update functionality for all registers in the core.
// All registers are positive edge triggered with asynchronous
// active low reset. All registers have write enable.
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin: reg_update
if (!reset_n)
begin
block_w0_reg <= 32'h00000000;
block_w1_reg <= 32'h00000000;
block_w2_reg <= 32'h00000000;
block_w3_reg <= 32'h00000000;
sword_ctr_reg <= 2'h0;
round_ctr_reg <= 4'h0;
ready_reg <= 1;
enc_ctrl_reg <= CTRL_IDLE;
end
else
begin
if (block_w0_we)
begin
block_w0_reg <= block_new[127 : 096];
end
if (block_w1_we)
begin
block_w1_reg <= block_new[095 : 064];
end
if (block_w2_we)
begin
block_w2_reg <= block_new[063 : 032];
end
if (block_w3_we)
begin
block_w3_reg <= block_new[031 : 000];
end
if (sword_ctr_we)
begin
sword_ctr_reg <= sword_ctr_new;
end
if (round_ctr_we)
begin
round_ctr_reg <= round_ctr_new;
end
if (ready_we)
begin
ready_reg <= ready_new;
end
if (enc_ctrl_we)
begin
enc_ctrl_reg <= enc_ctrl_new;
end
end
end // reg_update
//----------------------------------------------------------------
// round_logic
//
// The logic needed to implement init, main and final rounds.
//----------------------------------------------------------------
always @*
begin : round_logic
reg [127 : 0] old_block, shiftrows_block, mixcolumns_block;
reg [127 : 0] addkey_init_block, addkey_main_block, addkey_final_block;
block_new = 128'h00000000000000000000000000000000;
muxed_sboxw = 32'h00000000;
block_w0_we = 0;
block_w1_we = 0;
block_w2_we = 0;
block_w3_we = 0;
old_block = {block_w0_reg, block_w1_reg, block_w2_reg, block_w3_reg};
shiftrows_block = shiftrows(old_block);
mixcolumns_block = mixcolumns(shiftrows_block);
addkey_init_block = addroundkey(block, round_key);
addkey_main_block = addroundkey(mixcolumns_block, round_key);
addkey_final_block = addroundkey(shiftrows_block, round_key);
case (update_type)
INIT_UPDATE:
begin
block_new = addkey_init_block;
block_w0_we = 1;
block_w1_we = 1;
block_w2_we = 1;
block_w3_we = 1;
end
SBOX_UPDATE:
begin
block_new = {new_sboxw, new_sboxw, new_sboxw, new_sboxw};
case (sword_ctr_reg)
2'h0:
begin
muxed_sboxw = block_w0_reg;
block_w0_we = 1;
end
2'h1:
begin
muxed_sboxw = block_w1_reg;
block_w1_we = 1;
end
2'h2:
begin
muxed_sboxw = block_w2_reg;
block_w2_we = 1;
end
2'h3:
begin
muxed_sboxw = block_w3_reg;
block_w3_we = 1;
end
endcase // case (sbox_mux_ctrl_reg)
end
MAIN_UPDATE:
begin
block_new = addkey_main_block;
block_w0_we = 1;
block_w1_we = 1;
block_w2_we = 1;
block_w3_we = 1;
end
FINAL_UPDATE:
begin
block_new = addkey_final_block;
block_w0_we = 1;
block_w1_we = 1;
block_w2_we = 1;
block_w3_we = 1;
end
default:
begin
end
endcase // case (update_type)
end // round_logic
//----------------------------------------------------------------
// sword_ctr
//
// The subbytes word counter with reset and increase logic.
//----------------------------------------------------------------
always @*
begin : sword_ctr
sword_ctr_new = 2'h0;
sword_ctr_we = 1'b0;
if (sword_ctr_rst)
begin
sword_ctr_new = 2'h0;
sword_ctr_we = 1'b1;
end
else if (sword_ctr_inc)
begin
sword_ctr_new = sword_ctr_reg + 1'b1;
sword_ctr_we = 1'b1;
end
end // sword_ctr
//----------------------------------------------------------------
// round_ctr
//
// The round counter with reset and increase logic.
//----------------------------------------------------------------
always @*
begin : round_ctr
round_ctr_new = 4'h0;
round_ctr_we = 1'b0;
if (round_ctr_rst)
begin
round_ctr_new = 4'h0;
round_ctr_we = 1'b1;
end
else if (round_ctr_inc)
begin
round_ctr_new = round_ctr_reg + 1'b1;
round_ctr_we = 1'b1;
end
end // round_ctr
//----------------------------------------------------------------
// encipher_ctrl
//
// The FSM that controls the encipher operations.
//----------------------------------------------------------------
always @*
begin: encipher_ctrl
reg [3 : 0] num_rounds;
if (keylen == AES_256_BIT_KEY)
begin
num_rounds = AES256_ROUNDS;
end
else
begin
num_rounds = AES128_ROUNDS;
end
sword_ctr_inc = 0;
sword_ctr_rst = 0;
round_ctr_inc = 0;
round_ctr_rst = 0;
ready_new = 0;
ready_we = 0;
update_type = NO_UPDATE;
enc_ctrl_new = CTRL_IDLE;
enc_ctrl_we = 0;
case(enc_ctrl_reg)
CTRL_IDLE:
begin
if (next)
begin
round_ctr_rst = 1;
ready_new = 0;
ready_we = 1;
enc_ctrl_new = CTRL_INIT;
enc_ctrl_we = 1;
end
end
CTRL_INIT:
begin
round_ctr_inc = 1;
sword_ctr_rst = 1;
update_type = INIT_UPDATE;
enc_ctrl_new = CTRL_SBOX;
enc_ctrl_we = 1;
end
CTRL_SBOX:
begin
sword_ctr_inc = 1;
update_type = SBOX_UPDATE;
if (sword_ctr_reg == 2'h3)
begin
enc_ctrl_new = CTRL_MAIN;
enc_ctrl_we = 1;
end
end
CTRL_MAIN:
begin
sword_ctr_rst = 1;
round_ctr_inc = 1;
if (round_ctr_reg < num_rounds)
begin
update_type = MAIN_UPDATE;
enc_ctrl_new = CTRL_SBOX;
enc_ctrl_we = 1;
end
else
begin
update_type = FINAL_UPDATE;
ready_new = 1;
ready_we = 1;
enc_ctrl_new = CTRL_IDLE;
enc_ctrl_we = 1;
end
end
default:
begin
// Empty. Just here to make the synthesis tool happy.
end
endcase // case (enc_ctrl_reg)
end // encipher_ctrl
endmodule // aes_encipher_block
//======================================================================
// EOF aes_encipher_block.v
//======================================================================
|