1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
//======================================================================
//
// aes_decipher_block.v
// --------------------
// The AES decipher round. A pure combinational module that implements
// the initial round, main round and final round logic for
// decciper operations.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2014, NORDUnet A/S
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module aes_decipher_block(
input wire clk,
input wire reset_n,
input wire next,
input wire keylen,
output wire [3 : 0] round,
input wire [127 : 0] round_key,
input wire [127 : 0] block,
output wire [127 : 0] new_block,
output wire ready
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
localparam AES_128_BIT_KEY = 1'h0;
localparam AES_256_BIT_KEY = 1'h1;
localparam AES128_ROUNDS = 4'ha;
localparam AES256_ROUNDS = 4'he;
localparam NO_UPDATE = 2'h0;
localparam INIT_UPDATE = 2'h1;
localparam MAIN_UPDATE = 2'h2;
localparam FINAL_UPDATE = 2'h3;
localparam CTRL_IDLE = 2'h0;
localparam CTRL_INIT = 2'h1;
localparam CTRL_MAIN = 2'h2;
//----------------------------------------------------------------
// Gaolis multiplication functions for Inverse MixColumn.
//----------------------------------------------------------------
function [7 : 0] gm2(input [7 : 0] op);
begin
gm2 = {op[6 : 0], 1'b0} ^ (8'h1b & {8{op[7]}});
end
endfunction // gm2
function [7 : 0] gm3(input [7 : 0] op);
begin
gm3 = gm2(op) ^ op;
end
endfunction // gm3
function [7 : 0] gm4(input [7 : 0] op);
begin
gm4 = gm2(gm2(op));
end
endfunction // gm4
function [7 : 0] gm8(input [7 : 0] op);
begin
gm8 = gm2(gm4(op));
end
endfunction // gm8
function [7 : 0] gm09(input [7 : 0] op);
begin
gm09 = gm8(op) ^ op;
end
endfunction // gm09
function [7 : 0] gm11(input [7 : 0] op);
begin
gm11 = gm8(op) ^ gm2(op) ^ op;
end
endfunction // gm11
function [7 : 0] gm13(input [7 : 0] op);
begin
gm13 = gm8(op) ^ gm4(op) ^ op;
end
endfunction // gm13
function [7 : 0] gm14(input [7 : 0] op);
begin
gm14 = gm8(op) ^ gm4(op) ^ gm2(op);
end
endfunction // gm14
function [31 : 0] inv_mixw(input [31 : 0] w);
reg [7 : 0] b0, b1, b2, b3;
reg [7 : 0] mb0, mb1, mb2, mb3;
begin
b0 = w[31 : 24];
b1 = w[23 : 16];
b2 = w[15 : 08];
b3 = w[07 : 00];
mb0 = gm14(b0) ^ gm11(b1) ^ gm13(b2) ^ gm09(b3);
mb1 = gm09(b0) ^ gm14(b1) ^ gm11(b2) ^ gm13(b3);
mb2 = gm13(b0) ^ gm09(b1) ^ gm14(b2) ^ gm11(b3);
mb3 = gm11(b0) ^ gm13(b1) ^ gm09(b2) ^ gm14(b3);
inv_mixw = {mb0, mb1, mb2, mb3};
end
endfunction // mixw
function [127 : 0] inv_mixcolumns(input [127 : 0] data);
reg [31 : 0] w0, w1, w2, w3;
reg [31 : 0] ws0, ws1, ws2, ws3;
begin
w0 = data[127 : 096];
w1 = data[095 : 064];
w2 = data[063 : 032];
w3 = data[031 : 000];
ws0 = inv_mixw(w0);
ws1 = inv_mixw(w1);
ws2 = inv_mixw(w2);
ws3 = inv_mixw(w3);
inv_mixcolumns = {ws0, ws1, ws2, ws3};
end
endfunction // inv_mixcolumns
function [127 : 0] inv_shiftrows(input [127 : 0] data);
reg [31 : 0] w0, w1, w2, w3;
reg [31 : 0] ws0, ws1, ws2, ws3;
begin
w0 = data[127 : 096];
w1 = data[095 : 064];
w2 = data[063 : 032];
w3 = data[031 : 000];
ws0 = {w0[31 : 24], w3[23 : 16], w2[15 : 08], w1[07 : 00]};
ws1 = {w1[31 : 24], w0[23 : 16], w3[15 : 08], w2[07 : 00]};
ws2 = {w2[31 : 24], w1[23 : 16], w0[15 : 08], w3[07 : 00]};
ws3 = {w3[31 : 24], w2[23 : 16], w1[15 : 08], w0[07 : 00]};
inv_shiftrows = {ws0, ws1, ws2, ws3};
end
endfunction // inv_shiftrows
function [127 : 0] addroundkey(input [127 : 0] data, input [127 : 0] rkey);
begin
addroundkey = data ^ rkey;
end
endfunction // addroundkey
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [127 : 0] block_reg;
reg [127 : 0] block_new;
reg block_we;
reg [3 : 0] round_ctr_reg;
reg [3 : 0] round_ctr_new;
reg round_ctr_we;
reg round_ctr_set;
reg round_ctr_dec;
reg ready_reg;
reg ready_new;
reg ready_we;
reg [1 : 0] dec_ctrl_reg;
reg [1 : 0] dec_ctrl_new;
reg dec_ctrl_we;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
reg [31 : 0] sboxw0;
reg [31 : 0] sboxw1;
reg [31 : 0] sboxw2;
reg [31 : 0] sboxw3;
wire [31 : 0] new_sboxw0;
wire [31 : 0] new_sboxw1;
wire [31 : 0] new_sboxw2;
wire [31 : 0] new_sboxw3;
reg [1 : 0] update_type;
//----------------------------------------------------------------
// Inverse S-boxes.
//----------------------------------------------------------------
aes_inv_sbox inv_sbox_inst0(.sword(sboxw0), .new_sword(new_sboxw0));
aes_inv_sbox inv_sbox_inst1(.sword(sboxw1), .new_sword(new_sboxw1));
aes_inv_sbox inv_sbox_inst2(.sword(sboxw2), .new_sword(new_sboxw2));
aes_inv_sbox inv_sbox_inst3(.sword(sboxw3), .new_sword(new_sboxw3));
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign new_block = block_reg;
assign round = round_ctr_reg;
assign ready = ready_reg;
//----------------------------------------------------------------
// reg_update
//
// Update functionality for all registers in the core.
// All registers are positive edge triggered with synchronous
// active low reset. All registers have write enable.
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin: reg_update
if (!reset_n)
begin
block_reg <= 128'h0;
round_ctr_reg <= 4'h0;
ready_reg <= 1'b1;
dec_ctrl_reg <= CTRL_IDLE;
end
else
begin
if (block_we)
block_reg <= block_new;
if (round_ctr_we)
round_ctr_reg <= round_ctr_new;
if (ready_we)
ready_reg <= ready_new;
if (dec_ctrl_we)
dec_ctrl_reg <= dec_ctrl_new;
end
end // reg_update
//----------------------------------------------------------------
// round_logic
//
// The logic needed to implement init, main and final rounds.
//----------------------------------------------------------------
always @*
begin : round_logic
reg [127 : 0] subbytes_block, inv_shiftrows_block, inv_mixcolumns_block;
reg [127 : 0] addkey_block;
inv_shiftrows_block = 128'h0;
inv_mixcolumns_block = 128'h0;
addkey_block = 128'h0;
block_new = 128'h0;
block_we = 1'b0;
sboxw0 = block_reg[127 : 96];
sboxw1 = block_reg[95 : 64];
sboxw2 = block_reg[63 : 32];
sboxw3 = block_reg[31 : 0];
subbytes_block = {new_sboxw0, new_sboxw1, new_sboxw2, new_sboxw3};
case (update_type)
INIT_UPDATE:
begin
addkey_block = addroundkey(block, round_key);
inv_shiftrows_block = inv_shiftrows(addkey_block);
block_new = inv_shiftrows_block;
block_we = 1'b1;
end
MAIN_UPDATE:
begin
addkey_block = addroundkey(subbytes_block, round_key);
inv_mixcolumns_block = inv_mixcolumns(addkey_block);
inv_shiftrows_block = inv_shiftrows(inv_mixcolumns_block);
block_new = inv_shiftrows_block;
block_we = 1'b1;
end
FINAL_UPDATE:
begin
block_new = addroundkey(subbytes_block, round_key);
block_we = 1'b1;
end
default:
begin
end
endcase // case (update_type)
end // round_logic
//----------------------------------------------------------------
// round_ctr
//
// The round counter with reset and increase logic.
//----------------------------------------------------------------
always @*
begin : round_ctr
round_ctr_new = 4'h0;
round_ctr_we = 1'b0;
if (round_ctr_set)
begin
if (keylen == AES_256_BIT_KEY)
begin
round_ctr_new = AES256_ROUNDS;
end
else
begin
round_ctr_new = AES128_ROUNDS;
end
round_ctr_we = 1'b1;
end
else if (round_ctr_dec)
begin
round_ctr_new = round_ctr_reg - 1'b1;
round_ctr_we = 1'b1;
end
end // round_ctr
//----------------------------------------------------------------
// decipher_ctrl
//
// The FSM that controls the decipher operations.
//----------------------------------------------------------------
always @*
begin: decipher_ctrl
round_ctr_dec = 1'b0;
round_ctr_set = 1'b0;
ready_new = 1'b0;
ready_we = 1'b0;
update_type = NO_UPDATE;
dec_ctrl_new = CTRL_IDLE;
dec_ctrl_we = 1'b0;
case(dec_ctrl_reg)
CTRL_IDLE:
begin
if (next)
begin
round_ctr_set = 1'b1;
ready_new = 1'b0;
ready_we = 1'b1;
dec_ctrl_new = CTRL_INIT;
dec_ctrl_we = 1'b1;
end
end
CTRL_INIT:
begin
round_ctr_dec = 1'b1;
update_type = INIT_UPDATE;
dec_ctrl_new = CTRL_MAIN;
dec_ctrl_we = 1'b1;
end
CTRL_MAIN:
begin
if (round_ctr_reg > 0)
begin
round_ctr_dec = 1'b1;
update_type = MAIN_UPDATE;
end
else
begin
update_type = FINAL_UPDATE;
ready_new = 1'b1;
ready_we = 1'b1;
dec_ctrl_new = CTRL_IDLE;
dec_ctrl_we = 1'b1;
end
end
default:
begin
// Empty. Just here to make the synthesis tool happy.
end
endcase // case (dec_ctrl_reg)
end // decipher_ctrl
endmodule // aes_decipher_block
//======================================================================
// EOF aes_decipher_block.v
//======================================================================
|