//======================================================================
//
// aes.v
// --------
// Top level wrapper for the AES block cipher core.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2014, SUNET
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module aes(
// Clock and reset.
input wire clk,
input wire reset_n,
// Control.
input wire cs,
input wire we,
// Data ports.
input wire [7 : 0] address,
input wire [31 : 0] write_data,
output wire [31 : 0] read_data,
output wire error
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
parameter ADDR_NAME0 = 8'h00;
parameter ADDR_NAME1 = 8'h01;
parameter ADDR_VERSION = 8'h02;
parameter ADDR_CTRL = 8'h08;
parameter CTRL_INIT_BIT = 0;
parameter CTRL_NEXT_BIT = 1;
parameter ADDR_CONFIG = 8'h09;
parameter CTRL_ENCDEC_BIT = 0;
parameter CTRL_KEYLEN_BIT = 1;
parameter ADDR_STATUS = 8'h0a;
parameter STATUS_READY_BIT = 0;
parameter STATUS_VALID_BIT = 1;
parameter ADDR_KEY0 = 8'h10;
parameter ADDR_KEY1 = 8'h11;
parameter ADDR_KEY2 = 8'h12;
parameter ADDR_KEY3 = 8'h13;
parameter ADDR_KEY4 = 8'h14;
parameter ADDR_KEY5 = 8'h15;
parameter ADDR_KEY6 = 8'h16;
parameter ADDR_KEY7 = 8'h17;
parameter ADDR_BLOCK0 = 8'h20;
parameter ADDR_BLOCK1 = 8'h21;
parameter ADDR_BLOCK2 = 8'h22;
parameter ADDR_BLOCK3 = 8'h23;
parameter ADDR_RESULT0 = 8'h30;
parameter ADDR_RESULT1 = 8'h31;
parameter ADDR_RESULT2 = 8'h32;
parameter ADDR_RESULT3 = 8'h33;
parameter CORE_NAME0 = 32'h6165732d; // "aes-"
parameter CORE_NAME1 = 32'h31323820; // "128 "
parameter CORE_VERSION = 32'h302e3530; // "0.50"
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg init_reg;
reg init_new;
reg init_we;
reg init_set;
reg next_reg;
reg next_new;
reg next_we;
reg next_set;
reg encdec_reg;
reg keylen_reg;
reg config_we;
reg [31 : 0] block0_reg;
reg block0_we;
reg [31 : 0] block1_reg;
reg block1_we;
reg [31 : 0] block2_reg;
reg block2_we;
reg [31 : 0] block3_reg;
reg block3_we;
reg [31 : 0] key0_reg;
reg key0_we;
reg [31 : 0] key1_reg;
reg key1_we;
reg [31 : 0] key2_reg;
reg key2_we;
reg [31 : 0] key3_reg;
reg key3_we;
reg [31 : 0] key4_reg;
reg key4_we;
reg [31 : 0] key5_reg;
reg key5_we;
reg [31 : 0] key6_reg;
reg key6_we;
reg [31 : 0] key7_reg;
reg key7_we;
reg [127 : 0] result_reg;
reg valid_reg;
reg ready_reg;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
reg [31 : 0] tmp_read_data;
reg tmp_error;
wire core_encdec;
wire core_init;
wire core_next;
wire core_ready;
wire [255 : 0] core_key;
wire core_keylen;
wire [127 : 0] core_block;
wire [127 : 0] core_result;
wire core_valid;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign read_data = tmp_read_data;
assign error = tmp_error;
assign core_key = {key0_reg, key1_reg, key2_reg, key3_reg,
key4_reg, key5_reg, key6_reg, key7_reg};
assign core_block = {block0_reg, block1_reg, block2_reg, block3_reg};
assign core_init = init_reg;
assign core_next = next_reg;
assign core_encdec = encdec_reg;
assign core_keylen = keylen_reg;
//----------------------------------------------------------------
// core instantiation.
//----------------------------------------------------------------
aes_core core(
.clk(clk),
.reset_n(reset_n),
.encdec(core_encdec),
.init(core_init),
.next(core_next),
.ready(core_ready),
.key(core_key),
.keylen(core_keylen),
.block(core_block),
.result(core_result),
.result_valid(core_valid)
);
//----------------------------------------------------------------
// reg_update
// Update functionality for all registers in the core.
// All registers are positive edge triggered with asynchronous
// active low reset.
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin
if (!reset_n)
begin
block0_reg <= 32'h00000000;
block1_reg <= 32'h00000000;
block2_reg <= 32'h00000000;
block3_reg <= 32'h00000000;
key0_reg <= 32'h00000000;
key1_reg <= 32'h00000000;
key2_reg <= 32'h00000000;
key3_reg <= 32'h00000000;
key4_reg <= 32'h00000000;
key5_reg <= 32'h00000000;
key6_reg <= 32'h00000000;
key7_reg <= 32'h00000000;
init_reg <= 0;
next_reg <= 0;
encdec_reg <= 0;
keylen_reg <= 0;
result_reg <= 128'h00000000000000000000000000000000;
valid_reg <= 0;
ready_reg <= 0;
end
else
begin
ready_reg <= core_ready;
valid_reg <= core_valid;
result_reg <= core_result;
if (init_we)
begin
init_reg <= init_new;
end
if (next_we)
begin
next_reg <= next_new;
end
if (config_we)
begin
encdec_reg <= write_data[CTRL_ENCDEC_BIT];
keylen_reg <= write_data[CTRL_KEYLEN_BIT];
end
if (key0_we)
begin
key0_reg <= write_data;
end
if (key1_we)
begin
key1_reg <= write_data;
end
if (key2_we)
begin
key2_reg <= write_data;
end
if (key3_we)
begin
key3_reg <= write_data;
end
if (key4_we)
begin
key4_reg <= write_data;
end
if (key5_we)
begin
key5_reg <= write_data;
end
if (key6_we)
begin
key6_reg <= write_data;
end
if (key7_we)
begin
key7_reg <= write_data;
end
if (block0_we)
begin
block0_reg <= write_data;
end
if (block1_we)
begin
block1_reg <= write_data;
end
if (block2_we)
begin
block2_reg <= write_data;
end
if (block3_we)
begin
block3_reg <= write_data;
end
end
end // reg_update
//----------------------------------------------------------------
// flag_ctrl
//
// Logic to set and the automatically reset init- and
// next flags that has been set.
//----------------------------------------------------------------
always @*
begin : flag_reset
init_new = 0;
init_we = 0;
next_new = 0;
next_we = 0;
if (init_set)
begin
init_new = 1;
init_we = 1;
end
else if (init_reg)
begin
init_new = 0;
init_we = 1;
end
if (next_set)
begin
next_new = 1;
next_we = 1;
end
else if (next_reg)
begin
next_new = 0;
next_we = 1;
end
end
//----------------------------------------------------------------
// api
//
// The interface command decoding logic.
//----------------------------------------------------------------
always @*
begin : api
init_set = 0;
next_set = 0;
config_we = 0;
key0_we = 0;
key1_we = 0;
key2_we = 0;
key3_we = 0;
key4_we = 0;
key5_we = 0;
key6_we = 0;
key7_we = 0;
block0_we = 0;
block1_we = 0;
block2_we = 0;
block3_we = 0;
tmp_read_data = 32'h00000000;
tmp_error = 0;
if (cs)
begin
if (we)
begin
case (address)
// Write operations.
ADDR_CTRL:
begin
init_set = write_data[CTRL_INIT_BIT];
next_set = write_data[CTRL_NEXT_BIT];
end
ADDR_CONFIG:
begin
config_we = 1;
end
ADDR_KEY0:
begin
key0_we = 1;
end
ADDR_KEY1:
begin
key1_we = 1;
end
ADDR_KEY2:
begin
key2_we = 1;
end
ADDR_KEY3:
begin
key3_we = 1;
end
ADDR_KEY4:
begin
key4_we = 1;
end
ADDR_KEY5:
begin
key5_we = 1;
end
ADDR_KEY6:
begin
key6_we = 1;
end
ADDR_KEY7:
begin
key7_we = 1;
end
ADDR_BLOCK0:
begin
block0_we = 1;
end
ADDR_BLOCK1:
begin
block1_we = 1;
end
ADDR_BLOCK2:
begin
block2_we = 1;
end
ADDR_BLOCK3:
begin
block3_we = 1;
end
default:
begin
tmp_error = 1;
end
endcase // case (address)
end // if (we)
else
begin
case (address)
// Read operations.
ADDR_NAME0:
begin
tmp_read_data = CORE_NAME0;
end
ADDR_NAME1:
begin
tmp_read_data = CORE_NAME1;
end
ADDR_VERSION:
begin
tmp_read_data = CORE_VERSION;
end
ADDR_CTRL:
begin
tmp_read_data = {28'h0000000, keylen_reg, encdec_reg,
next_reg, init_reg};
end
ADDR_STATUS:
begin
tmp_read_data = {30'h00000000, valid_reg, ready_reg};
end
ADDR_KEY0:
begin
tmp_read_data = key0_reg;
end
ADDR_KEY1:
begin
tmp_read_data = key1_reg;
end
ADDR_KEY2:
begin
tmp_read_data = key2_reg;
end
ADDR_KEY3:
begin
tmp_read_data = key3_reg;
end
ADDR_KEY4:
begin
tmp_read_data = key4_reg;
end
ADDR_KEY5:
begin
tmp_read_data = key5_reg;
end
ADDR_KEY6:
begin
tmp_read_data = key6_reg;
end
ADDR_KEY7:
begin
tmp_read_data = key7_reg;
end
ADDR_BLOCK0:
begin
tmp_read_data = block0_reg;
end
ADDR_BLOCK1:
begin
tmp_read_data = block1_reg;
end
ADDR_BLOCK2:
begin
tmp_read_data = block2_reg;
end
ADDR_BLOCK3:
begin
tmp_read_data = block3_reg;
end
ADDR_RESULT0:
begin
tmp_read_data = result_reg[127 : 96];
end
ADDR_RESULT1:
begin
tmp_read_data = result_reg[95 : 64];
end
ADDR_RESULT2:
begin
tmp_read_data = result_reg[63 : 32];
end
ADDR_RESULT3:
begin
tmp_read_data = result_reg[31 : 0];
end
default:
begin
tmp_error = 1;
end
endcase // case (address)
end
end
end // addr_decoder
endmodule // aes
//======================================================================
// EOF aes.v
//======================================================================