
CrypTech
Building a More Assured

HSM and Obsessing
About the Tool-Chain

Randy Bush <randy@psg.com>

Hardware Security Module
From Wikipedia:

 A hardware security module (HSM) is a physical
computing device that safeguards and manages
digital keys for strong authentication and
provides crypto processing. These modules
traditionally come in the form of a plug-in card
or an external device that attaches directly to
a computer or network server.

141002 CrypTech @ IIJ 2 Creative Commons: Attribution & Share Alike

HSMs Are Used For
•  Principally, Lock-box for Private Keys for

•  DNSsec
•  RPKI
•  PGP
•  Corporate Authentication
•  Encryption / Decryption
•  VPNs
•  Source of Randomness
•  Your use goes here

141002 CrypTech @ IIJ 3 Creative Commons: Attribution & Share Alike

The Need
•  Every week a new horror about Crypto/Privacy

•  der Spiegel’s revelation of the “SpyMall
Catalogue”

•  Compromises of and trojans in most network
devices, servers, firewalls, ...

•  We are relying on HSMs designed and made
by 42-eyes government contractors

•  Many people are not comfortable with this
141002 CrypTech @ IIJ 4 Creative Commons: Attribution & Share Alike

141002 CrypTech @ IIJ 5 Creative Commons: Attribution & Share Alike

Origins
•  This effort was started at the suggestion of

Russ Housley, Jari Arkko, and Stephen Farrell
of the IETF, to meet the assurance needs of
supporting IETF protocols in an open and
transparent manner.

•  But this is NOT an IETF, ISOC, ... project,
though both contribute. As the saying goes,
“We work for the Internet.”

141002 CrypTech @ IIJ 6 Creative Commons: Attribution & Share Alike

Goals
•  An open-source reference design for

HSMs

•  Scalable, first cut in an FPGA and CPU,
later allow higher speed options

•  Composable, e.g. “Give me a key store
and signer suitable for DNSsec”

•  Reasonable assurance by being open,
diverse design team, and an increasingly
assured tool-chain

141002 CrypTech @ IIJ 7 Creative Commons: Attribution & Share Alike

Open and Transparent
•  The project is being run in a maximally

open, transparent manner with
traceability for all decisions etc.

•  We do this in order to build trust in
the project itself

•  And diverse, engineering and funding

141002 CrypTech @ IIJ 8 Creative Commons: Attribution & Share Alike

Funding (so far) From

141002 CrypTech @ IIJ 9 Creative Commons: Attribution & Share Alike

A Few Private
Donations

FPGA (ASIC)
Hashes: SHA*/MD5/GOST Encrypt: AES/Camellia PublicKey RSA/ECC/DSA, Block Crypto Modes

TRNG, BigNum, Modular, Exponentiation

On-Chip Core(s)
KeyGen/Store, Hash, Sign, Verify, Encrypt, Decrypt, DH, ECDH,

PKCS#1/5/8, [Un]Load, Stretching, Device Activation/Wipe

Off-ChipSupport Code
X.509/PGP/… Packaging, PKCS#7/10/11/15, Backup

Applications
DNSSEC, RPKI, PGP, VPN, OTR, random, TCP/AO, …

Security
Boundary

&
Tamper
Power
Timing

Layer Cake Model

141002 CrypTech @ IIJ Creative Commons: Attribution & Share Alike 10

FPGA Cat Video

141002 CrypTech @ IIJ
11

Creative Commons: Attribution & Share Alike

A Prototyping Board

141002 CrypTech @ IIJ 12 Creative Commons: Attribution & Share Alike

Novena Spartan ‘Laptop’

141002 CrypTech @ IIJ 13 Creative Commons: Attribution & Share Alike

FPGA

Entropy with Pi Pin-Out

141002 CrypTech @ IIJ 14 Creative Commons: Attribution & Share Alike

Entropy on Novena

Creative Commons: Attribution & Share Alike 15 141002 CrypTech @ IIJ

FPGA

Entropy Porn

141002 CrypTech @ IIJ 16 Creative Commons: Attribution & Share Alike

TRNG Chain

141002 CrypTech @ IIJ 17 Creative Commons: Attribution & Share Alike

Entropy
Provider

Mixer
(SHA-512)

CSPRNG
(ChaCha)

Control & Test

Seed

Entropy
Provider

FPGA

Random
values

The TRNG Architecture

External
Noise

Source

141002 CrypTech @ IIJ Creative Commons: Attribution & Share Alike 18

P

P

Entropy
Provider

Mixer
(SHA-512)

CSPRNG
(ChaCha)

Control & Test

Seed

Entropy
Provider

FPGA

Random
values

Or Maybe

External
Noise

Source

141002 CrypTech @ IIJ Creative Commons: Attribution & Share Alike 19

P

P

Test and Observability
•  Two modes

•  Production Mode (PM) and Test Mode (TM)

•  Observability of entropy sources in PM
•  Continuous on-line testing in PM
•  Injection in stages and complete chain in TM
•  Generation of a small number of values in TM
•  Allows test of all digital functionality including

continuous tests.
•  Full restart when going between TM and PM

141002 CrypTech @ IIJ Creative Commons: Attribution & Share Alike 20

Entropy
collect

Post-
proc

AIS31

b0rk

On-line tests
alarm

Test access to noise and entropy

Entropy to
mixer

Noise
alarm

•  Extract for off-line comprehensive testing
•  Inject for functional testing in test mode

Observability & Test of Entropy Sources

141002 CrypTech @ IIJ Creative Commons: Attribution & Share Alike 21

P

Mix
function

(SHA-512)

Entropy

Entropy

Seed

Inject for functional testing in test mode

Observability & Test of Mixer

141002 CrypTech @ IIJ Creative Commons: Attribution & Share Alike 22

Stream cipher

(ChaCha)

Seed Random
values

Inject for functional testing in test mode

Observability & Test of CSPRNG

141002 CrypTech @ IIJ Creative Commons: Attribution & Share Alike 23

Some of the Fears
•  ToolChain Poisoning

•  Device Poisoning

•  Side-Channel Attacks

•  How can you tell if your vendor actually
implemented CrypTech, and correctly?

141002 CrypTech @ IIJ 24 Creative Commons: Attribution & Share Alike

The Tool Chain
•  When my laptop’s fan goes on, I think it

is the NSA, GCHQ, Israelis, Chinese, …
are fighting to see who will own me

•  We have NO ASSURANCE of our tool
set, from CPU to Kernel to Compiler to …

•  When constructing assurance-critical
tools, we need to maximize assurance in
the tools used to build them

141002 CrypTech @ IIJ 25 Creative Commons: Attribution & Share Alike

The Compiler
•  Ken Thompson’s 1984 Turing Award paper

Reflections on Trusting Trust

•  A self-reproducing trap in the C compiler
which “would match code in the UNIX
"login" command. The replacement code
would miscompile the login command so
that it would accept either the intended
encrypted password or a particular known
password.” You have been owned!

141002 CrypTech @ IIJ 26 Creative Commons: Attribution & Share Alike

Double-Diverse Compilation
•  In his 2009 PhD dissertation, David

Wheeler explained how to counter the
“trusting trust” attack by using the
“Diverse Double-Compiling” (DDC)
technique

•  We can use this on GCC and clang to get
somewhat assured compilers

•  But you still have to inspect the source!

141002 CrypTech @ IIJ 27 Creative Commons: Attribution & Share Alike

Critical Tool-Chain
•  C compilers audited and built using DCC
•  Audited kernel, libc, …
•  Audited whole darn UNIX or Linux
•  Audited Verilog compiler
•  Audited FPGA download tools
•  Audited test tools
•  Trojan prevention & detection

141002 CrypTech @ IIJ 28 Creative Commons: Attribution & Share Alike

HDL / Verilog
•  But FPGAs/ASICs are programmed in a

Hardware Definition Language, Verilog

•  It is very hard to get an open Verilog
compiler

•  Verilog can not compile itself, so DDC is
not applicable here, just a DCC C compiler

•  We are working on methods of gaining
trust in the FPGA tool chain

141002 CrypTech @ IIJ 29 Creative Commons: Attribution & Share Alike

Side Channel & Tampering
•  Exponentiation circuit timing leaks are

exploitable remotely

•  Power leakage is exploitable locally

•  Physical attack detection critical

•  Wipe key store if tampering detected

•  Side-Channel attacks are the subject of
entire conferences

141002 CrypTech @ IIJ 30 Creative Commons: Attribution & Share Alike

Potting Boundary

141002 CrypTech @ IIJ 31 Creative Commons: Attribution & Share Alike

FPGA
Hashes: SHA*/MD5/GOST Encrypt: AES/Camellia PublicKey RSA/ECC/DSA, Block Crypto Modes

TRNG, BigNum, Modular, Exponentiation

On-Chip Core(s)
KeyGen/Store, Hash, Sign, Verify, Encrypt, Decrypt, DH, ECDH,

PKCS#1/5/8, [Un]Load, Stretching, Device Activation/Wipe

Security
Boundary

&
Tamper
Power
Timing

•  The FPGA/ASIC and accompanying Core(s) (ARM, whatever) are within
the physically protected boundary of the chip carrier potting.

•  On-board battery/capacitor to buy the time to wipe all data if unplugged
from power

•  We worry about tampering, what if the chip is opened and attacked? So
the potting includes tampering sensors and code to wipe all keys if
tampering is detected.

Some Phases
•  First Year: Tool-chain, Basic Design, not

all cyphers, not all protocols, prototype
implementations on FPGAs and boards

•  Second Year: Better Tool-chain, all
needed cyphers, hashes, crypting, … and
integration with some apps, DNSsec,
RPKI, TLS, PGP, Tor

•  Third Year: Solid packaging, ability to
compose designs for use cases, etc.

141002 CrypTech @ IIJ 32 Creative Commons: Attribution & Share Alike

A Few Related Projects
•  Truecrypt audit: http://
istruecryptauditedyet.com!

•  OpenCores: http://opencores.org!

•  Icarus Verilog: http://
iverilog.icarus.com!

•  Valgrind: http://valgrind.org!

•  clang+llvm: http://clang.llvm.org!

141002 CrypTech @ IIJ 33 Creative Commons: Attribution & Share Alike

141002 CrypTech @ IIJ 34 Creative Commons: Attribution & Share Alike

https://cryptech.is/

141002 CrypTech @ IIJ 35 Creative Commons: Attribution & Share Alike

