#!/usr/bin/env python """ Python prototype of an AES Key Wrap implementation, RFC 5649 flavor per Russ, using Cryptlib to supply the AES code. """ # Terminology mostly follows the RFC, including variable names. # # Block sizes get confusing: AES Key Wrap uses 64-bit blocks, not to # be confused with AES, which uses 128-bit blocks. In practice, this # is less confusing than when reading the description, because we # concatenate two 64-bit blocks just prior to performing an AES ECB # operation, then immediately split the result back into a pair of # 64-bit blocks. from cryptlib_py import * from struct import pack, unpack import atexit verbose = False def bin2hex(bytes, sep = ":"): return sep.join("%02x" % ord(b) for b in bytes) def hex2bin(text): return text.translate(None, ": \t\n\r").decode("hex") def start_stop(start, stop): # syntactic sugar step = -1 if start > stop else 1 return xrange(start, stop + step, step) class Block(long): """ One 64-bit block, a Python long with some extra methods. """ def __new__(cls, v): assert v >= 0 and v.bit_length() <= 64 return super(Block, cls).__new__(cls, v) @classmethod def from_bytes(cls, v): assert isinstance(v, str) and len(v) == 8 return cls(unpack(">Q", v)[0]) def to_bytes(self): assert self >= 0 and self.bit_length() <= 64 return pack(">Q", self) @classmethod def from_words(cls, hi, lo): assert hi >= 0 and hi.bit_length() <= 32 assert lo >= 0 and lo.bit_length() <= 32 return cls((hi << 32L) + lo) def to_words(self): assert self >= 0 and self.bit_length() <= 64 return ((self >> 32) & 0xFFFFFFFF), (self & 0xFFFFFFFF) def to_hex(self): assert self >= 0 and self.bit_length() <= 64 return "%016x" % self class Buffer(array): """ Python type B array with a few extra methods. """ def __new__(cls, *initializer): return super(Buffer, cls).__new__(cls, "B", *initializer) def get_block(self, i): return self.__class__(self[8*i:8*(i+1)]) def set_block(self, i, v): assert len(v) == 8 self[8*i:8*(i+1)] = v def get_hex(self, i = None): return bin2hex(self if i is None else self.get_block(i)) class KEK(object): """ Key encryption key, based on a Cryptlib encryption context. This can work with either Block objects or Python arrays. Since this is a test tool used with known static keys in an attempt to produce known results, we use a totally unsafe keying method. Don't try this at home, kids. """ def __init__(self, key): self.ctx = cryptCreateContext(CRYPT_UNUSED, CRYPT_ALGO_AES) atexit.register(cryptDestroyContext, self.ctx) self.ctx.CTXINFO_MODE = CRYPT_MODE_ECB self.ctx.CTXINFO_KEY = key def encrypt_block(self, i1, i2): """ Concatenate two 64-bit blocks into a 128-bit block, encrypt it with AES-ECB, return the result split back into 64-bit blocks. """ aes_block = array("B", pack(">QQ", i1, i2)) cryptEncrypt(self.ctx, aes_block) o1, o2 = tuple(Block(b) for b in unpack(">QQ", aes_block.tostring())) if verbose: print " Encrypt: %s | %s => %s | %s" % tuple(b.to_hex() for b in (i1, i2, o1, o2)) return o1, o2 def encrypt_array(self, b1, b2): """ Concatenate two 64-bit blocks into a 128-bit block, encrypt it with AES-ECB, return the result split back into 64-bit blocks. """ aes_block = b1 + b2 cryptEncrypt(self.ctx, aes_block) return Buffer(aes_block[:8]), Buffer(aes_block[8:]) def decrypt_block(self, i1, i2): """ Concatenate two 64-bit blocks into a 128-bit block, decrypt it with AES-ECB, return the result split back into 64-bit blocks. """ aes_block = array("B", pack(">QQ", i1, i2)) cryptDecrypt(self.ctx, aes_block) o1, o2 = tuple(Block(b) for b in unpack(">QQ", aes_block.tostring())) if verbose: print " Decrypt: %s | %s => %s | %s" % tuple(b.to_hex() for b in (i1, i2, o1, o2)) return o1, o2 def decrypt_array(self, b1, b2): """ Concatenate two 64-bit blocks into a 128-bit block, decrypt it with AES-ECB, return the result split back into 64-bit blocks. """ aes_block = b1 + b2 cryptDecrypt(self.ctx, aes_block) return Buffer(aes_block[:8]), Buffer(aes_block[8:]) def block_wrap_key(Q, K): """ Wrap a key according to RFC 5649 section 4.1. Q is the plaintext to be wrapped, a byte string. K is the KEK with which to encrypt. Returns C, the wrapped ciphertext. This implementation is based on Python long integers and includes code to log internal state in verbose mode. """ if verbose: def log_registers(): print " A: ", A.to_hex() for r in xrange(1, n+1): print " R[%3d]" % r, R[r].to_hex() m = len(Q) if m % 8 != 0: Q += "\x00" * (8 - (m % 8)) assert len(Q) % 8 == 0 n = len(Q) / 8 P = [Block.from_bytes(Q[i:i+8]) for i in xrange(0, len(Q), 8)] assert len(P) == n P.insert(0, None) # Make P one-based A = Block.from_words(0xA65959A6, m) # RFC 5649 section 3 AIV R = P # Alias to follow the spec if verbose: print " Starting wrap, n =", n if n == 1: if verbose: log_registers() C = K.encrypt_block(A, P[1]) else: # RFC 3394 section 2.2.1 for j in start_stop(0, 5): for i in start_stop(1, n): t = n * j + i if verbose: print " i = %d, j = %d, t = 0x%x" % (i, j, t) log_registers() B_hi, B_lo = K.encrypt_block(A, R[i]) A = Block(B_hi ^ t) R[i] = B_lo C = R C[0] = A if verbose: print " Finishing wrap" for i in xrange(len(C)): print " C[%3d]" % i, C[i].to_hex() print assert len(C) == n + 1 return "".join(c.to_bytes() for c in C) def array_wrap_key(Q, K): """ Wrap a key according to RFC 5649 section 4.1. Q is the plaintext to be wrapped, a byte string. K is the KEK with which to encrypt. Returns C, the wrapped ciphertext. This implementation is based on Python byte arrays. """ m = len(Q) # Plaintext length R = Buffer("\xa6\x59\x59\xa6") # Magic MSB(32,A) for i in xrange(24, -8, -8): R.append((m >> i) & 0xFF) # Build LSB(32,A) R.fromstring(Q) # Append Q if m % 8 != 0: # Pad Q if needed R.fromstring("\x00" * (8 - (m % 8))) assert len(R) % 8 == 0 n = (len(R) / 8) - 1 if n == 1: B1, B2 = K.encrypt_array(R.get_block(0), R.get_block(1)) R.set_block(0, B1) R.set_block(1, B2) else: # RFC 3394 section 2.2.1 for j in start_stop(0, 5): for i in start_stop(1, n): B1, B2 = K.encrypt_array(R.get_block(0), R.get_block(i)) t = n * j + i R.set_block(0, B1) R.set_block(i, B2) R[7] ^= t & 0xFF; t >>= 8 R[6] ^= t & 0xFF; t >>= 8 R[5] ^= t & 0xFF; t >>= 8 R[4] ^= t & 0xFF assert len(R) == (n + 1) * 8 return R.tostring() class UnwrapError(Exception): "Something went wrong during unwrap." def block_unwrap_key(C, K): """ Unwrap a key according to RFC 5649 section 4.2. C is the ciphertext to be unwrapped, a byte string K is the KEK with which to decrypt. Returns Q, the unwrapped plaintext. This implementation is based on Python long integers and includes code to log internal state in verbose mode. """ if verbose: def log_registers(): print " A: ", A.to_hex() for r in xrange(1, n+1): print " R[%3d]" % r, R[r].to_hex() if len(C) % 8 != 0: raise UnwrapError("Ciphertext length %d is not an integral number of blocks" % len(C)) n = (len(C) / 8) - 1 C = [Block.from_bytes(C[i:i+8]) for i in xrange(0, len(C), 8)] assert len(C) == n + 1 P = R = C # Lots of names for the same list of blocks A = C[0] if verbose: print " Starting unwrap, n =", n if n == 1: if verbose: log_registers() A, R[1] = K.decrypt_block(A, R[1]) else: # RFC 3394 section 2.2.2 steps (1), (2), and part of (3) for j in start_stop(5, 0): for i in start_stop(n, 1): t = n * j + i if verbose: print " i = %d, j = %d, t = 0x%x" % (i, j, t) log_registers() B_hi, B_lo = K.decrypt_block(Block(A ^ t), R[i]) A = B_hi R[i] = B_lo if verbose: print " Finishing unwrap" print " A: ", A.to_hex() for i in xrange(1, len(P)): print " P[%3d]" % i, P[i].to_hex() print magic, m = A.to_words() if magic != 0xA65959A6: raise UnwrapError("Magic value in AIV should hae been a65959a6, was %08x" % magic) if m <= 8 * (n - 1) or m > 8 * n: raise UnwrapError("Length encoded in AIV out of range: m %d, n %d" % (m, n)) Q = "".join(p.to_bytes() for p in P[1:]) assert len(Q) == 8 * n if any(q != "\x00" for q in Q[m:]): raise UnwrapError("Nonzero trailing bytes %s" % bin2hex(Q[m:])) return Q[:m] def array_unwrap_key(C, K): """ Unwrap a key according to RFC 5649 section 4.2. C is the ciphertext to be unwrapped, a byte string K is the KEK with which to decrypt. Returns Q, the unwrapped plaintext. This implementation is based on Python byte arrays. """ if len(C) % 8 != 0: raise UnwrapError("Ciphertext length %d is not an integral number of blocks" % len(C)) n = (len(C) / 8) - 1 R = Buffer(C) if n == 1: B1, B2 = K.decrypt_array(R.get_block(0), R.get_block(1)) R.set_block(0, B1) R.set_block(1, B2) else: # RFC 3394 section 2.2.2 steps (1), (2), and part of (3) for j in start_stop(5, 0): for i in start_stop(n, 1): t = n * j + i R[7] ^= t & 0xFF; t >>= 8 R[6] ^= t & 0xFF; t >>= 8 R[5] ^= t & 0xFF; t >>= 8 R[4] ^= t & 0xFF B1, B2 = K.decrypt_array(R.get_block(0), R.get_block(i)) R.set_block(0, B1) R.set_block(i, B2) if R[:4].tostring() != "\xa6\x59\x59\xa6": raise UnwrapError("Magic value in AIV should hae been a65959a6, was %02x%02x%02x%02x" % (R[0], R[1], R[2], R[3])) m = (((((R[4] << 8) + R[5]) << 8) + R[6]) << 8) + R[7] if m <= 8 * (n - 1) or m > 8 * n: raise UnwrapError("Length encoded in AIV out of range: m %d, n %d" % (m, n)) del R[:8] assert len(R) == 8 * n if any(r != 0 for r in R[m:]): raise UnwrapError("Nonzero trailing bytes %s" % ":".join("%02x" % r for r in R[m:])) del R[m:] assert len(R) == m return R.tostring() if __name__ == "__main__": # Test code from here down def loopback_test(K, I): """ Loopback test, just encrypt followed by decrypt to see if we can get matching results without throwing any errors. """ print "Testing:", repr(I) C = wrap_key(I, K) print "Wrapped: [%d]" % len(C), bin2hex(C) O = unwrap_key(C, K) if I != O: raise RuntimeError("Input and output plaintext did not match: %r <> %r" % (I, O)) print def rfc5649_test(K, Q, C): """ Test vectors as in RFC 5649 or similar. """ print "Testing: [%d]" % len(Q), bin2hex(Q) c = wrap_key(Q, K) print "Wrapped: [%d]" % len(C), bin2hex(C) q = unwrap_key(C, K) if q != Q: raise RuntimeError("Input and output plaintext did not match: %s <> %s" % (bin2hex(Q), bin2hex(q))) if c != C: raise RuntimeError("Input and output ciphertext did not match: %s <> %s" % (bin2hex(C), bin2hex(c))) print def run_tests(): """ Run all tests for a particular implementation. """ if args.rfc5649_test_vectors: print "Test vectors from RFC 5649" print rfc5649_test(K = KEK(hex2bin("5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8")), Q = hex2bin("c37b7e6492584340 bed1220780894115 5068f738"), C = hex2bin("138bdeaa9b8fa7fc 61f97742e72248ee 5ae6ae5360d1ae6a 5f54f373fa543b6a")) rfc5649_test(K = KEK(hex2bin("5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8")), Q = hex2bin("466f7250617369"), C = hex2bin("afbeb0f07dfbf541 9200f2ccb50bb24f")) if args.mangled_tests: print "Deliberately mangled test vectors to see whether we notice" print "These *should* detect errors" for d in (dict(K = KEK(hex2bin("5840df6e29b02af0 ab493b705bf16ea1 ae8338f4dcc176a8")), Q = hex2bin("466f7250617368"), C = hex2bin("afbeb0f07dfbf541 9200f2ccb50bb24f")), dict(K = KEK(key = hex2bin("5840df6e29b02af0 ab493b705bf16ea1 ae8338f4dcc176a8")), Q = hex2bin("466f7250617368"), C = hex2bin("afbeb0f07dfbf541 9200f2ccb50bb24f 0123456789abcdef")), dict(K = KEK(key = hex2bin("5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8")), Q = hex2bin("c37b7e6492584340 bed1220780894115 5068f738"), C = hex2bin("138bdeaa9b8fa7fc 61f97742e72248ee 5ae6ae5360d1ae6a"))): print try: rfc5649_test(**d) except UnwrapError as e: print "Detected an error during unwrap: %s" % e except RuntimeError as e: print "Detected an error in test function: %s" % e print if args.loopback_tests: print "Loopback tests of various lengths" print K = KEK(hex2bin("00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f")) loopback_test(K, "!") loopback_test(K, "!") loopback_test(K, "Yo!") loopback_test(K, "Hi, Mom") loopback_test(K, "1" * (64 / 8)) loopback_test(K, "2" * (128 / 8)) loopback_test(K, "3" * (256 / 8)) loopback_test(K, "3.14159265358979323846264338327950288419716939937510") loopback_test(K, "3.14159265358979323846264338327950288419716939937510") loopback_test(K, "Hello! My name is Inigo Montoya. You killed my AES key wrapper. Prepare to die.") # Main (test) program from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter parser = ArgumentParser(description = __doc__, formatter_class = ArgumentDefaultsHelpFormatter) parser.add_argument("-v", "--verbose", action = "store_true", help = "bark more") parser.add_argument("-r", "--rfc5649-test-vectors", action = "store_false", help = "RFC 5649 test vectors") parser.add_argument("-m", "--mangled-tests", action = "store_true", help = "test against deliberately mangled test vectors") parser.add_argument("-l", "--loopback-tests", action = "store_true", help = "ad hoc collection of loopback tests") parser.add_argument("under_test", nargs = "?", choices = ("array", "long", "both"), default = "long", help = "implementation to test") args = parser.parse_args() verbose = args.verbose cryptInit() atexit.register(cryptEnd) if args.under_test in ("long", "both"): print "Testing with Block (Python long) implementation" print wrap_key = block_wrap_key unwrap_key = block_unwrap_key run_tests() if args.under_test in ("array", "both"): print "Testing with Python array implementation" print wrap_key = array_wrap_key unwrap_key = array_unwrap_key run_tests()