/** ****************************************************************************** * @file stm32f4xx_ll_fmc.c * @author MCD Application Team * @version V1.4.4 * @date 22-January-2016 * @brief FMC Low Layer HAL module driver. * * This file provides firmware functions to manage the following * functionalities of the Flexible Memory Controller (FMC) peripheral memories: * + Initialization/de-initialization functions * + Peripheral Control functions * + Peripheral State functions * @verbatim ============================================================================== ##### FMC peripheral features ##### ============================================================================== [..] The Flexible memory controller (FMC) includes three memory controllers: (+) The NOR/PSRAM memory controller (+) The NAND/PC Card memory controller (+) The Synchronous DRAM (SDRAM) controller [..] The FMC functional block makes the interface with synchronous and asynchronous static memories, SDRAM memories, and 16-bit PC memory cards. Its main purposes are: (+) to translate AHB transactions into the appropriate external device protocol (+) to meet the access time requirements of the external memory devices [..] All external memories share the addresses, data and control signals with the controller. Each external device is accessed by means of a unique Chip Select. The FMC performs only one access at a time to an external device. The main features of the FMC controller are the following: (+) Interface with static-memory mapped devices including: (++) Static random access memory (SRAM) (++) Read-only memory (ROM) (++) NOR Flash memory/OneNAND Flash memory (++) PSRAM (4 memory banks) (++) 16-bit PC Card compatible devices (++) Two banks of NAND Flash memory with ECC hardware to check up to 8 Kbytes of data (+) Interface with synchronous DRAM (SDRAM) memories (+) Independent Chip Select control for each memory bank (+) Independent configuration for each memory bank @endverbatim ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2016 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_hal.h" /** @addtogroup STM32F4xx_HAL_Driver * @{ */ /** @defgroup FMC_LL FMC Low Layer * @brief FMC driver modules * @{ */ #if defined (HAL_SRAM_MODULE_ENABLED) || defined(HAL_NOR_MODULE_ENABLED) || defined(HAL_NAND_MODULE_ENABLED) || defined(HAL_PCCARD_MODULE_ENABLED) || defined(HAL_SDRAM_MODULE_ENABLED) #if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) || defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx) /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** @addtogroup FMC_LL_Private_Functions * @{ */ /** @addtogroup FMC_LL_NORSRAM * @brief NORSRAM Controller functions * @verbatim ============================================================================== ##### How to use NORSRAM device driver ##### ============================================================================== [..] This driver contains a set of APIs to interface with the FMC NORSRAM banks in order to run the NORSRAM external devices. (+) FMC NORSRAM bank reset using the function FMC_NORSRAM_DeInit() (+) FMC NORSRAM bank control configuration using the function FMC_NORSRAM_Init() (+) FMC NORSRAM bank timing configuration using the function FMC_NORSRAM_Timing_Init() (+) FMC NORSRAM bank extended timing configuration using the function FMC_NORSRAM_Extended_Timing_Init() (+) FMC NORSRAM bank enable/disable write operation using the functions FMC_NORSRAM_WriteOperation_Enable()/FMC_NORSRAM_WriteOperation_Disable() @endverbatim * @{ */ /** @addtogroup FMC_LL_NORSRAM_Private_Functions_Group1 * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### Initialization and de_initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the FMC NORSRAM interface (+) De-initialize the FMC NORSRAM interface (+) Configure the FMC clock and associated GPIOs @endverbatim * @{ */ /** * @brief Initialize the FMC_NORSRAM device according to the specified * control parameters in the FMC_NORSRAM_InitTypeDef * @param Device: Pointer to NORSRAM device instance * @param Init: Pointer to NORSRAM Initialization structure * @retval HAL status */ HAL_StatusTypeDef FMC_NORSRAM_Init(FMC_NORSRAM_TypeDef *Device, FMC_NORSRAM_InitTypeDef* Init) { uint32_t tmpr = 0U; /* Check the parameters */ assert_param(IS_FMC_NORSRAM_DEVICE(Device)); assert_param(IS_FMC_NORSRAM_BANK(Init->NSBank)); assert_param(IS_FMC_MUX(Init->DataAddressMux)); assert_param(IS_FMC_MEMORY(Init->MemoryType)); assert_param(IS_FMC_NORSRAM_MEMORY_WIDTH(Init->MemoryDataWidth)); assert_param(IS_FMC_BURSTMODE(Init->BurstAccessMode)); assert_param(IS_FMC_WAIT_POLARITY(Init->WaitSignalPolarity)); #if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) assert_param(IS_FMC_WRAP_MODE(Init->WrapMode)); #endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ assert_param(IS_FMC_WAIT_SIGNAL_ACTIVE(Init->WaitSignalActive)); assert_param(IS_FMC_WRITE_OPERATION(Init->WriteOperation)); assert_param(IS_FMC_WAITE_SIGNAL(Init->WaitSignal)); assert_param(IS_FMC_EXTENDED_MODE(Init->ExtendedMode)); assert_param(IS_FMC_ASYNWAIT(Init->AsynchronousWait)); assert_param(IS_FMC_WRITE_BURST(Init->WriteBurst)); assert_param(IS_FMC_CONTINOUS_CLOCK(Init->ContinuousClock)); assert_param(IS_FMC_PAGESIZE(Init->PageSize)); #if defined (STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx) assert_param(IS_FMC_WRITE_FIFO(Init->WriteFifo)); #endif /* STM32F446xx || STM32F469xx || STM32F479xx */ /* Get the BTCR register value */ tmpr = Device->BTCR[Init->NSBank]; #if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) /* Clear MBKEN, MUXEN, MTYP, MWID, FACCEN, BURSTEN, WAITPOL, WRAPMOD, WAITCFG, WREN, WAITEN, EXTMOD, ASYNCWAIT, CPSIZE, CBURSTRW and CCLKEN bits */ tmpr &= ((uint32_t)~(FMC_BCR1_MBKEN | FMC_BCR1_MUXEN | FMC_BCR1_MTYP | \ FMC_BCR1_MWID | FMC_BCR1_FACCEN | FMC_BCR1_BURSTEN | \ FMC_BCR1_WAITPOL | FMC_BCR1_WRAPMOD | FMC_BCR1_WAITCFG | \ FMC_BCR1_WREN | FMC_BCR1_WAITEN | FMC_BCR1_EXTMOD | \ FMC_BCR1_ASYNCWAIT | FMC_BCR1_CPSIZE | FMC_BCR1_CBURSTRW | \ FMC_BCR1_CCLKEN)); /* Set NORSRAM device control parameters */ tmpr |= (uint32_t)(Init->DataAddressMux |\ Init->MemoryType |\ Init->MemoryDataWidth |\ Init->BurstAccessMode |\ Init->WaitSignalPolarity |\ Init->WrapMode |\ Init->WaitSignalActive |\ Init->WriteOperation |\ Init->WaitSignal |\ Init->ExtendedMode |\ Init->AsynchronousWait |\ Init->PageSize |\ Init->WriteBurst |\ Init->ContinuousClock); #else /* defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx) */ /* Clear MBKEN, MUXEN, MTYP, MWID, FACCEN, BURSTEN, WAITPOL, CPSIZE, WAITCFG, WREN, WAITEN, EXTMOD, ASYNCWAIT, CBURSTRW, CCLKEN and WFDIS bits */ tmpr &= ((uint32_t)~(FMC_BCR1_MBKEN | FMC_BCR1_MUXEN | FMC_BCR1_MTYP | \ FMC_BCR1_MWID | FMC_BCR1_FACCEN | FMC_BCR1_BURSTEN | \ FMC_BCR1_WAITPOL | FMC_BCR1_WAITCFG | FMC_BCR1_CPSIZE | \ FMC_BCR1_WREN | FMC_BCR1_WAITEN | FMC_BCR1_EXTMOD | \ FMC_BCR1_ASYNCWAIT | FMC_BCR1_CBURSTRW | FMC_BCR1_CCLKEN | \ FMC_BCR1_WFDIS)); /* Set NORSRAM device control parameters */ tmpr |= (uint32_t)(Init->DataAddressMux |\ Init->MemoryType |\ Init->MemoryDataWidth |\ Init->BurstAccessMode |\ Init->WaitSignalPolarity |\ Init->WaitSignalActive |\ Init->WriteOperation |\ Init->WaitSignal |\ Init->ExtendedMode |\ Init->AsynchronousWait |\ Init->WriteBurst |\ Init->ContinuousClock |\ Init->PageSize |\ Init->WriteFifo); #endif /* defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) */ if(Init->MemoryType == FMC_MEMORY_TYPE_NOR) { tmpr |= (uint32_t)FMC_NORSRAM_FLASH_ACCESS_ENABLE; } Device->BTCR[Init->NSBank] = tmpr; /* Configure synchronous mode when Continuous clock is enabled for bank2..4 */ if((Init->ContinuousClock == FMC_CONTINUOUS_CLOCK_SYNC_ASYNC) && (Init->NSBank != FMC_NORSRAM_BANK1)) { Device->BTCR[FMC_NORSRAM_BANK1] |= (uint32_t)(Init->ContinuousClock); } #if defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx) if(Init->NSBank != FMC_NORSRAM_BANK1) { Device->BTCR[FMC_NORSRAM_BANK1] |= (uint32_t)(Init->WriteFifo); } #endif /* STM32F446xx || STM32F469xx || STM32F479xx */ return HAL_OK; } /** * @brief DeInitialize the FMC_NORSRAM peripheral * @param Device: Pointer to NORSRAM device instance * @param ExDevice: Pointer to NORSRAM extended mode device instance * @param Bank: NORSRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NORSRAM_DeInit(FMC_NORSRAM_TypeDef *Device, FMC_NORSRAM_EXTENDED_TypeDef *ExDevice, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NORSRAM_DEVICE(Device)); assert_param(IS_FMC_NORSRAM_EXTENDED_DEVICE(ExDevice)); assert_param(IS_FMC_NORSRAM_BANK(Bank)); /* Disable the FMC_NORSRAM device */ __FMC_NORSRAM_DISABLE(Device, Bank); /* De-initialize the FMC_NORSRAM device */ /* FMC_NORSRAM_BANK1 */ if(Bank == FMC_NORSRAM_BANK1) { Device->BTCR[Bank] = 0x000030DBU; } /* FMC_NORSRAM_BANK2, FMC_NORSRAM_BANK3 or FMC_NORSRAM_BANK4 */ else { Device->BTCR[Bank] = 0x000030D2U; } Device->BTCR[Bank + 1] = 0x0FFFFFFFU; ExDevice->BWTR[Bank] = 0x0FFFFFFFU; return HAL_OK; } /** * @brief Initialize the FMC_NORSRAM Timing according to the specified * parameters in the FMC_NORSRAM_TimingTypeDef * @param Device: Pointer to NORSRAM device instance * @param Timing: Pointer to NORSRAM Timing structure * @param Bank: NORSRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NORSRAM_Timing_Init(FMC_NORSRAM_TypeDef *Device, FMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank) { uint32_t tmpr = 0U; /* Check the parameters */ assert_param(IS_FMC_NORSRAM_DEVICE(Device)); assert_param(IS_FMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime)); assert_param(IS_FMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime)); assert_param(IS_FMC_DATASETUP_TIME(Timing->DataSetupTime)); assert_param(IS_FMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration)); assert_param(IS_FMC_CLK_DIV(Timing->CLKDivision)); assert_param(IS_FMC_DATA_LATENCY(Timing->DataLatency)); assert_param(IS_FMC_ACCESS_MODE(Timing->AccessMode)); assert_param(IS_FMC_NORSRAM_BANK(Bank)); /* Get the BTCR register value */ tmpr = Device->BTCR[Bank + 1U]; /* Clear ADDSET, ADDHLD, DATAST, BUSTURN, CLKDIV, DATLAT and ACCMOD bits */ tmpr &= ((uint32_t)~(FMC_BTR1_ADDSET | FMC_BTR1_ADDHLD | FMC_BTR1_DATAST | \ FMC_BTR1_BUSTURN | FMC_BTR1_CLKDIV | FMC_BTR1_DATLAT | \ FMC_BTR1_ACCMOD)); /* Set FMC_NORSRAM device timing parameters */ tmpr |= (uint32_t)(Timing->AddressSetupTime |\ ((Timing->AddressHoldTime) << 4U) |\ ((Timing->DataSetupTime) << 8U) |\ ((Timing->BusTurnAroundDuration) << 16U) |\ (((Timing->CLKDivision) - 1U) << 20U) |\ (((Timing->DataLatency) - 2U) << 24U) |\ (Timing->AccessMode)); Device->BTCR[Bank + 1U] = tmpr; /* Configure Clock division value (in NORSRAM bank 1) when continuous clock is enabled */ if(HAL_IS_BIT_SET(Device->BTCR[FMC_NORSRAM_BANK1], FMC_BCR1_CCLKEN)) { tmpr = (uint32_t)(Device->BTCR[FMC_NORSRAM_BANK1 + 1U] & ~(((uint32_t)0x0FU) << 20U)); tmpr |= (uint32_t)(((Timing->CLKDivision) - 1U) << 20U); Device->BTCR[FMC_NORSRAM_BANK1 + 1U] = tmpr; } return HAL_OK; } /** * @brief Initialize the FMC_NORSRAM Extended mode Timing according to the specified * parameters in the FMC_NORSRAM_TimingTypeDef * @param Device: Pointer to NORSRAM device instance * @param Timing: Pointer to NORSRAM Timing structure * @param Bank: NORSRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NORSRAM_Extended_Timing_Init(FMC_NORSRAM_EXTENDED_TypeDef *Device, FMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank, uint32_t ExtendedMode) { uint32_t tmpr = 0U; /* Check the parameters */ assert_param(IS_FMC_EXTENDED_MODE(ExtendedMode)); /* Set NORSRAM device timing register for write configuration, if extended mode is used */ if(ExtendedMode == FMC_EXTENDED_MODE_ENABLE) { /* Check the parameters */ assert_param(IS_FMC_NORSRAM_EXTENDED_DEVICE(Device)); assert_param(IS_FMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime)); assert_param(IS_FMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime)); assert_param(IS_FMC_DATASETUP_TIME(Timing->DataSetupTime)); assert_param(IS_FMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration)); assert_param(IS_FMC_ACCESS_MODE(Timing->AccessMode)); assert_param(IS_FMC_NORSRAM_BANK(Bank)); /* Get the BWTR register value */ tmpr = Device->BWTR[Bank]; /* Clear ADDSET, ADDHLD, DATAST, BUSTURN and ACCMOD bits */ tmpr &= ((uint32_t)~(FMC_BWTR1_ADDSET | FMC_BWTR1_ADDHLD | FMC_BWTR1_DATAST | \ FMC_BWTR1_BUSTURN | FMC_BWTR1_ACCMOD)); tmpr |= (uint32_t)(Timing->AddressSetupTime |\ ((Timing->AddressHoldTime) << 4U) |\ ((Timing->DataSetupTime) << 8U) |\ ((Timing->BusTurnAroundDuration) << 16U) |\ (Timing->AccessMode)); Device->BWTR[Bank] = tmpr; } else { Device->BWTR[Bank] = 0x0FFFFFFFU; } return HAL_OK; } /** * @} */ /** @addtogroup FMC_LL_NORSRAM_Private_Functions_Group2 * @brief management functions * @verbatim ============================================================================== ##### FMC_NORSRAM Control functions ##### ============================================================================== [..] This subsection provides a set of functions allowing to control dynamically the FMC NORSRAM interface. @endverbatim * @{ */ /** * @brief Enables dynamically FMC_NORSRAM write operation. * @param Device: Pointer to NORSRAM device instance * @param Bank: NORSRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NORSRAM_WriteOperation_Enable(FMC_NORSRAM_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NORSRAM_DEVICE(Device)); assert_param(IS_FMC_NORSRAM_BANK(Bank)); /* Enable write operation */ Device->BTCR[Bank] |= FMC_WRITE_OPERATION_ENABLE; return HAL_OK; } /** * @brief Disables dynamically FMC_NORSRAM write operation. * @param Device: Pointer to NORSRAM device instance * @param Bank: NORSRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NORSRAM_WriteOperation_Disable(FMC_NORSRAM_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NORSRAM_DEVICE(Device)); assert_param(IS_FMC_NORSRAM_BANK(Bank)); /* Disable write operation */ Device->BTCR[Bank] &= ~FMC_WRITE_OPERATION_ENABLE; return HAL_OK; } /** * @} */ /** * @} */ /** @addtogroup FMC_LL_NAND * @brief NAND Controller functions * @verbatim ============================================================================== ##### How to use NAND device driver ##### ============================================================================== [..] This driver contains a set of APIs to interface with the FMC NAND banks in order to run the NAND external devices. (+) FMC NAND bank reset using the function FMC_NAND_DeInit() (+) FMC NAND bank control configuration using the function FMC_NAND_Init() (+) FMC NAND bank common space timing configuration using the function FMC_NAND_CommonSpace_Timing_Init() (+) FMC NAND bank attribute space timing configuration using the function FMC_NAND_AttributeSpace_Timing_Init() (+) FMC NAND bank enable/disable ECC correction feature using the functions FMC_NAND_ECC_Enable()/FMC_NAND_ECC_Disable() (+) FMC NAND bank get ECC correction code using the function FMC_NAND_GetECC() @endverbatim * @{ */ #if defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx) /** @defgroup HAL_FMC_NAND_Group1 Initialization/de-initialization functions * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### Initialization and de_initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the FMC NAND interface (+) De-initialize the FMC NAND interface (+) Configure the FMC clock and associated GPIOs @endverbatim * @{ */ /** * @brief Initializes the FMC_NAND device according to the specified * control parameters in the FMC_NAND_HandleTypeDef * @param Device: Pointer to NAND device instance * @param Init: Pointer to NAND Initialization structure * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_Init(FMC_NAND_TypeDef *Device, FMC_NAND_InitTypeDef *Init) { uint32_t tmpr = 0U; /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Init->NandBank)); assert_param(IS_FMC_WAIT_FEATURE(Init->Waitfeature)); assert_param(IS_FMC_NAND_MEMORY_WIDTH(Init->MemoryDataWidth)); assert_param(IS_FMC_ECC_STATE(Init->EccComputation)); assert_param(IS_FMC_ECCPAGE_SIZE(Init->ECCPageSize)); assert_param(IS_FMC_TCLR_TIME(Init->TCLRSetupTime)); assert_param(IS_FMC_TAR_TIME(Init->TARSetupTime)); /* Get the NAND bank register value */ tmpr = Device->PCR; /* Clear PWAITEN, PBKEN, PTYP, PWID, ECCEN, TCLR, TAR and ECCPS bits */ tmpr &= ((uint32_t)~(FMC_PCR_PWAITEN | FMC_PCR_PBKEN | FMC_PCR_PTYP | \ FMC_PCR_PWID | FMC_PCR_ECCEN | FMC_PCR_TCLR | \ FMC_PCR_TAR | FMC_PCR_ECCPS)); /* Set NAND device control parameters */ tmpr |= (uint32_t)(Init->Waitfeature |\ FMC_PCR_MEMORY_TYPE_NAND |\ Init->MemoryDataWidth |\ Init->EccComputation |\ Init->ECCPageSize |\ ((Init->TCLRSetupTime) << 9U) |\ ((Init->TARSetupTime) << 13U)); /* NAND bank registers configuration */ Device->PCR = tmpr; return HAL_OK; } /** * @brief Initializes the FMC_NAND Common space Timing according to the specified * parameters in the FMC_NAND_PCC_TimingTypeDef * @param Device: Pointer to NAND device instance * @param Timing: Pointer to NAND timing structure * @param Bank: NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_CommonSpace_Timing_Init(FMC_NAND_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) { uint32_t tmpr = 0U; /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Get the NAND bank 2 register value */ tmpr = Device->PMEM; /* Clear MEMSETx, MEMWAITx, MEMHOLDx and MEMHIZx bits */ tmpr &= ((uint32_t)~(FMC_PMEM_MEMSET2 | FMC_PMEM_MEMWAIT2 | FMC_PMEM_MEMHOLD2 | \ FMC_PMEM_MEMHIZ2)); /* Set FMC_NAND device timing parameters */ tmpr |= (uint32_t)(Timing->SetupTime |\ ((Timing->WaitSetupTime) << 8U) |\ ((Timing->HoldSetupTime) << 16U) |\ ((Timing->HiZSetupTime) << 24U) ); /* NAND bank registers configuration */ Device->PMEM = tmpr; return HAL_OK; } /** * @brief Initializes the FMC_NAND Attribute space Timing according to the specified * parameters in the FMC_NAND_PCC_TimingTypeDef * @param Device: Pointer to NAND device instance * @param Timing: Pointer to NAND timing structure * @param Bank: NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_AttributeSpace_Timing_Init(FMC_NAND_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) { uint32_t tmpr = 0U; /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Get the NAND bank register value */ tmpr = Device->PATT; /* Clear ATTSETx, ATTWAITx, ATTHOLDx and ATTHIZx bits */ tmpr &= ((uint32_t)~(FMC_PATT_ATTSET2 | FMC_PATT_ATTWAIT2 | FMC_PATT_ATTHOLD2 | \ FMC_PATT_ATTHIZ2)); /* Set FMC_NAND device timing parameters */ tmpr |= (uint32_t)(Timing->SetupTime |\ ((Timing->WaitSetupTime) << 8U) |\ ((Timing->HoldSetupTime) << 16U) |\ ((Timing->HiZSetupTime) << 24U)); /* NAND bank registers configuration */ Device->PATT = tmpr; return HAL_OK; } /** * @brief DeInitializes the FMC_NAND device * @param Device: Pointer to NAND device instance * @param Bank: NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_DeInit(FMC_NAND_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Disable the NAND Bank */ __FMC_NAND_DISABLE(Device, Bank); /* De-initialize the NAND Bank */ /* Set the FMC_NAND_BANK registers to their reset values */ Device->PCR = 0x00000018U; Device->SR = 0x00000040U; Device->PMEM = 0xFCFCFCFCU; Device->PATT = 0xFCFCFCFCU; return HAL_OK; } /** * @} */ /** @defgroup HAL_FMC_NAND_Group2 Control functions * @brief management functions * @verbatim ============================================================================== ##### FMC_NAND Control functions ##### ============================================================================== [..] This subsection provides a set of functions allowing to control dynamically the FMC NAND interface. @endverbatim * @{ */ /** * @brief Enables dynamically FMC_NAND ECC feature. * @param Device: Pointer to NAND device instance * @param Bank: NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_ECC_Enable(FMC_NAND_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Enable ECC feature */ Device->PCR |= FMC_PCR_ECCEN; return HAL_OK; } /** * @brief Disables dynamically FMC_NAND ECC feature. * @param Device: Pointer to NAND device instance * @param Bank: NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_ECC_Disable(FMC_NAND_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Disable ECC feature */ Device->PCR &= ~FMC_PCR_ECCEN; return HAL_OK; } /** * @brief Disables dynamically FMC_NAND ECC feature. * @param Device: Pointer to NAND device instance * @param ECCval: Pointer to ECC value * @param Bank: NAND bank number * @param Timeout: Timeout wait value * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_GetECC(FMC_NAND_TypeDef *Device, uint32_t *ECCval, uint32_t Bank, uint32_t Timeout) { uint32_t tickstart = 0U; /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Get tick */ tickstart = HAL_GetTick(); /* Wait until FIFO is empty */ while(__FMC_NAND_GET_FLAG(Device, Bank, FMC_FLAG_FEMPT) == RESET) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { return HAL_TIMEOUT; } } } /* Get the ECCR register value */ *ECCval = (uint32_t)Device->ECCR; return HAL_OK; } /** * @} */ #else /* defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) */ /** @defgroup HAL_FMC_NAND_Group1 Initialization/de-initialization functions * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### Initialization and de_initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the FMC NAND interface (+) De-initialize the FMC NAND interface (+) Configure the FMC clock and associated GPIOs @endverbatim * @{ */ /** * @brief Initializes the FMC_NAND device according to the specified * control parameters in the FMC_NAND_HandleTypeDef * @param Device: Pointer to NAND device instance * @param Init: Pointer to NAND Initialization structure * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_Init(FMC_NAND_TypeDef *Device, FMC_NAND_InitTypeDef *Init) { uint32_t tmpr = 0U; /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Init->NandBank)); assert_param(IS_FMC_WAIT_FEATURE(Init->Waitfeature)); assert_param(IS_FMC_NAND_MEMORY_WIDTH(Init->MemoryDataWidth)); assert_param(IS_FMC_ECC_STATE(Init->EccComputation)); assert_param(IS_FMC_ECCPAGE_SIZE(Init->ECCPageSize)); assert_param(IS_FMC_TCLR_TIME(Init->TCLRSetupTime)); assert_param(IS_FMC_TAR_TIME(Init->TARSetupTime)); if(Init->NandBank == FMC_NAND_BANK2) { /* Get the NAND bank 2 register value */ tmpr = Device->PCR2; } else { /* Get the NAND bank 3 register value */ tmpr = Device->PCR3; } /* Clear PWAITEN, PBKEN, PTYP, PWID, ECCEN, TCLR, TAR and ECCPS bits */ tmpr &= ((uint32_t)~(FMC_PCR2_PWAITEN | FMC_PCR2_PBKEN | FMC_PCR2_PTYP | \ FMC_PCR2_PWID | FMC_PCR2_ECCEN | FMC_PCR2_TCLR | \ FMC_PCR2_TAR | FMC_PCR2_ECCPS)); /* Set NAND device control parameters */ tmpr |= (uint32_t)(Init->Waitfeature |\ FMC_PCR_MEMORY_TYPE_NAND |\ Init->MemoryDataWidth |\ Init->EccComputation |\ Init->ECCPageSize |\ ((Init->TCLRSetupTime) << 9U) |\ ((Init->TARSetupTime) << 13U)); if(Init->NandBank == FMC_NAND_BANK2) { /* NAND bank 2 registers configuration */ Device->PCR2 = tmpr; } else { /* NAND bank 3 registers configuration */ Device->PCR3 = tmpr; } return HAL_OK; } /** * @brief Initializes the FMC_NAND Common space Timing according to the specified * parameters in the FMC_NAND_PCC_TimingTypeDef * @param Device: Pointer to NAND device instance * @param Timing: Pointer to NAND timing structure * @param Bank: NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_CommonSpace_Timing_Init(FMC_NAND_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) { uint32_t tmpr = 0U; /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); assert_param(IS_FMC_NAND_BANK(Bank)); if(Bank == FMC_NAND_BANK2) { /* Get the NAND bank 2 register value */ tmpr = Device->PMEM2; } else { /* Get the NAND bank 3 register value */ tmpr = Device->PMEM3; } /* Clear MEMSETx, MEMWAITx, MEMHOLDx and MEMHIZx bits */ tmpr &= ((uint32_t)~(FMC_PMEM2_MEMSET2 | FMC_PMEM2_MEMWAIT2 | FMC_PMEM2_MEMHOLD2 | \ FMC_PMEM2_MEMHIZ2)); /* Set FMC_NAND device timing parameters */ tmpr |= (uint32_t)(Timing->SetupTime |\ ((Timing->WaitSetupTime) << 8U) |\ ((Timing->HoldSetupTime) << 16U) |\ ((Timing->HiZSetupTime) << 24U) ); if(Bank == FMC_NAND_BANK2) { /* NAND bank 2 registers configuration */ Device->PMEM2 = tmpr; } else { /* NAND bank 3 registers configuration */ Device->PMEM3 = tmpr; } return HAL_OK; } /** * @brief Initializes the FMC_NAND Attribute space Timing according to the specified * parameters in the FMC_NAND_PCC_TimingTypeDef * @param Device: Pointer to NAND device instance * @param Timing: Pointer to NAND timing structure * @param Bank: NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_AttributeSpace_Timing_Init(FMC_NAND_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) { uint32_t tmpr = 0U; /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); assert_param(IS_FMC_NAND_BANK(Bank)); if(Bank == FMC_NAND_BANK2) { /* Get the NAND bank 2 register value */ tmpr = Device->PATT2; } else { /* Get the NAND bank 3 register value */ tmpr = Device->PATT3; } /* Clear ATTSETx, ATTWAITx, ATTHOLDx and ATTHIZx bits */ tmpr &= ((uint32_t)~(FMC_PATT2_ATTSET2 | FMC_PATT2_ATTWAIT2 | FMC_PATT2_ATTHOLD2 | \ FMC_PATT2_ATTHIZ2)); /* Set FMC_NAND device timing parameters */ tmpr |= (uint32_t)(Timing->SetupTime |\ ((Timing->WaitSetupTime) << 8U) |\ ((Timing->HoldSetupTime) << 16U) |\ ((Timing->HiZSetupTime) << 24U)); if(Bank == FMC_NAND_BANK2) { /* NAND bank 2 registers configuration */ Device->PATT2 = tmpr; } else { /* NAND bank 3 registers configuration */ Device->PATT3 = tmpr; } return HAL_OK; } /** * @brief DeInitializes the FMC_NAND device * @param Device: Pointer to NAND device instance * @param Bank: NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_DeInit(FMC_NAND_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Disable the NAND Bank */ __FMC_NAND_DISABLE(Device, Bank); /* De-initialize the NAND Bank */ if(Bank == FMC_NAND_BANK2) { /* Set the FMC_NAND_BANK2 registers to their reset values */ Device->PCR2 = 0x00000018U; Device->SR2 = 0x00000040U; Device->PMEM2 = 0xFCFCFCFCU; Device->PATT2 = 0xFCFCFCFCU; } /* FMC_Bank3_NAND */ else { /* Set the FMC_NAND_BANK3 registers to their reset values */ Device->PCR3 = 0x00000018U; Device->SR3 = 0x00000040U; Device->PMEM3 = 0xFCFCFCFCU; Device->PATT3 = 0xFCFCFCFCU; } return HAL_OK; } /** * @} */ /** @addtogroup FMC_LL_NAND_Private_Functions_Group2 * @brief management functions * @verbatim ============================================================================== ##### FMC_NAND Control functions ##### ============================================================================== [..] This subsection provides a set of functions allowing to control dynamically the FMC NAND interface. @endverbatim * @{ */ /** * @brief Enables dynamically FMC_NAND ECC feature. * @param Device: Pointer to NAND device instance * @param Bank: NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_ECC_Enable(FMC_NAND_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Enable ECC feature */ if(Bank == FMC_NAND_BANK2) { Device->PCR2 |= FMC_PCR2_ECCEN; } else { Device->PCR3 |= FMC_PCR3_ECCEN; } return HAL_OK; } /** * @brief Disables dynamically FMC_NAND ECC feature. * @param Device: Pointer to NAND device instance * @param Bank: NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_ECC_Disable(FMC_NAND_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Disable ECC feature */ if(Bank == FMC_NAND_BANK2) { Device->PCR2 &= ~FMC_PCR2_ECCEN; } else { Device->PCR3 &= ~FMC_PCR3_ECCEN; } return HAL_OK; } /** * @brief Disables dynamically FMC_NAND ECC feature. * @param Device: Pointer to NAND device instance * @param ECCval: Pointer to ECC value * @param Bank: NAND bank number * @param Timeout: Timeout wait value * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_GetECC(FMC_NAND_TypeDef *Device, uint32_t *ECCval, uint32_t Bank, uint32_t Timeout) { uint32_t tickstart = 0U; /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Get tick */ tickstart = HAL_GetTick(); /* Wait until FIFO is empty */ while(__FMC_NAND_GET_FLAG(Device, Bank, FMC_FLAG_FEMPT) == RESET) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { return HAL_TIMEOUT; } } } if(Bank == FMC_NAND_BANK2) { /* Get the ECCR2 register value */ *ECCval = (uint32_t)Device->ECCR2; } else { /* Get the ECCR3 register value */ *ECCval = (uint32_t)Device->ECCR3; } return HAL_OK; } /** * @} */ #endif /* defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx) */ /** * @} */ #if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) /** @addtogroup FMC_LL_PCCARD * @brief PCCARD Controller functions * @verbatim ============================================================================== ##### How to use PCCARD device driver ##### ============================================================================== [..] This driver contains a set of APIs to interface with the FMC PCCARD bank in order to run the PCCARD/compact flash external devices. (+) FMC PCCARD bank reset using the function FMC_PCCARD_DeInit() (+) FMC PCCARD bank control configuration using the function FMC_PCCARD_Init() (+) FMC PCCARD bank common space timing configuration using the function FMC_PCCARD_CommonSpace_Timing_Init() (+) FMC PCCARD bank attribute space timing configuration using the function FMC_PCCARD_AttributeSpace_Timing_Init() (+) FMC PCCARD bank IO space timing configuration using the function FMC_PCCARD_IOSpace_Timing_Init() @endverbatim * @{ */ /** @addtogroup FMC_LL_PCCARD_Private_Functions_Group1 * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### Initialization and de_initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the FMC PCCARD interface (+) De-initialize the FMC PCCARD interface (+) Configure the FMC clock and associated GPIOs @endverbatim * @{ */ /** * @brief Initializes the FMC_PCCARD device according to the specified * control parameters in the FMC_PCCARD_HandleTypeDef * @param Device: Pointer to PCCARD device instance * @param Init: Pointer to PCCARD Initialization structure * @retval HAL status */ HAL_StatusTypeDef FMC_PCCARD_Init(FMC_PCCARD_TypeDef *Device, FMC_PCCARD_InitTypeDef *Init) { uint32_t tmpr = 0U; /* Check the parameters */ assert_param(IS_FMC_PCCARD_DEVICE(Device)); assert_param(IS_FMC_WAIT_FEATURE(Init->Waitfeature)); assert_param(IS_FMC_TCLR_TIME(Init->TCLRSetupTime)); assert_param(IS_FMC_TAR_TIME(Init->TARSetupTime)); /* Get PCCARD control register value */ tmpr = Device->PCR4; /* Clear TAR, TCLR, PWAITEN and PWID bits */ tmpr &= ((uint32_t)~(FMC_PCR4_TAR | FMC_PCR4_TCLR | FMC_PCR4_PWAITEN | \ FMC_PCR4_PWID)); /* Set FMC_PCCARD device control parameters */ tmpr |= (uint32_t)(Init->Waitfeature |\ FMC_NAND_PCC_MEM_BUS_WIDTH_16 |\ (Init->TCLRSetupTime << 9U) |\ (Init->TARSetupTime << 13U)); Device->PCR4 = tmpr; return HAL_OK; } /** * @brief Initializes the FMC_PCCARD Common space Timing according to the specified * parameters in the FMC_NAND_PCC_TimingTypeDef * @param Device: Pointer to PCCARD device instance * @param Timing: Pointer to PCCARD timing structure * @retval HAL status */ HAL_StatusTypeDef FMC_PCCARD_CommonSpace_Timing_Init(FMC_PCCARD_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing) { uint32_t tmpr = 0U; /* Check the parameters */ assert_param(IS_FMC_PCCARD_DEVICE(Device)); assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); /* Get PCCARD common space timing register value */ tmpr = Device->PMEM4; /* Clear MEMSETx, MEMWAITx, MEMHOLDx and MEMHIZx bits */ tmpr &= ((uint32_t)~(FMC_PMEM4_MEMSET4 | FMC_PMEM4_MEMWAIT4 | FMC_PMEM4_MEMHOLD4 | \ FMC_PMEM4_MEMHIZ4)); /* Set PCCARD timing parameters */ tmpr |= (uint32_t)(Timing->SetupTime |\ ((Timing->WaitSetupTime) << 8U) |\ ((Timing->HoldSetupTime) << 16U) |\ ((Timing->HiZSetupTime) << 24U)); Device->PMEM4 = tmpr; return HAL_OK; } /** * @brief Initializes the FMC_PCCARD Attribute space Timing according to the specified * parameters in the FMC_NAND_PCC_TimingTypeDef * @param Device: Pointer to PCCARD device instance * @param Timing: Pointer to PCCARD timing structure * @retval HAL status */ HAL_StatusTypeDef FMC_PCCARD_AttributeSpace_Timing_Init(FMC_PCCARD_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing) { uint32_t tmpr = 0U; /* Check the parameters */ assert_param(IS_FMC_PCCARD_DEVICE(Device)); assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); /* Get PCCARD timing parameters */ tmpr = Device->PATT4; /* Clear ATTSETx, ATTWAITx, ATTHOLDx and ATTHIZx bits */ tmpr &= ((uint32_t)~(FMC_PATT4_ATTSET4 | FMC_PATT4_ATTWAIT4 | FMC_PATT4_ATTHOLD4 | \ FMC_PATT4_ATTHIZ4)); /* Set PCCARD timing parameters */ tmpr |= (uint32_t)(Timing->SetupTime |\ ((Timing->WaitSetupTime) << 8U) |\ ((Timing->HoldSetupTime) << 16U) |\ ((Timing->HiZSetupTime) << 24U)); Device->PATT4 = tmpr; return HAL_OK; } /** * @brief Initializes the FMC_PCCARD IO space Timing according to the specified * parameters in the FMC_NAND_PCC_TimingTypeDef * @param Device: Pointer to PCCARD device instance * @param Timing: Pointer to PCCARD timing structure * @retval HAL status */ HAL_StatusTypeDef FMC_PCCARD_IOSpace_Timing_Init(FMC_PCCARD_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing) { uint32_t tmpr = 0; /* Check the parameters */ assert_param(IS_FMC_PCCARD_DEVICE(Device)); assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); /* Get FMC_PCCARD device timing parameters */ tmpr = Device->PIO4; /* Clear IOSET4, IOWAIT4, IOHOLD4 and IOHIZ4 bits */ tmpr &= ((uint32_t)~(FMC_PIO4_IOSET4 | FMC_PIO4_IOWAIT4 | FMC_PIO4_IOHOLD4 | \ FMC_PIO4_IOHIZ4)); /* Set FMC_PCCARD device timing parameters */ tmpr |= (uint32_t)(Timing->SetupTime |\ ((Timing->WaitSetupTime) << 8U) |\ ((Timing->HoldSetupTime) << 16U) |\ ((Timing->HiZSetupTime) << 24U)); Device->PIO4 = tmpr; return HAL_OK; } /** * @brief DeInitializes the FMC_PCCARD device * @param Device: Pointer to PCCARD device instance * @retval HAL status */ HAL_StatusTypeDef FMC_PCCARD_DeInit(FMC_PCCARD_TypeDef *Device) { /* Check the parameters */ assert_param(IS_FMC_PCCARD_DEVICE(Device)); /* Disable the FMC_PCCARD device */ __FMC_PCCARD_DISABLE(Device); /* De-initialize the FMC_PCCARD device */ Device->PCR4 = 0x00000018U; Device->SR4 = 0x00000000U; Device->PMEM4 = 0xFCFCFCFCU; Device->PATT4 = 0xFCFCFCFCU; Device->PIO4 = 0xFCFCFCFCU; return HAL_OK; } /** * @} */ #endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ /** @addtogroup FMC_LL_SDRAM * @brief SDRAM Controller functions * @verbatim ============================================================================== ##### How to use SDRAM device driver ##### ============================================================================== [..] This driver contains a set of APIs to interface with the FMC SDRAM banks in order to run the SDRAM external devices. (+) FMC SDRAM bank reset using the function FMC_SDRAM_DeInit() (+) FMC SDRAM bank control configuration using the function FMC_SDRAM_Init() (+) FMC SDRAM bank timing configuration using the function FMC_SDRAM_Timing_Init() (+) FMC SDRAM bank enable/disable write operation using the functions FMC_SDRAM_WriteOperation_Enable()/FMC_SDRAM_WriteOperation_Disable() (+) FMC SDRAM bank send command using the function FMC_SDRAM_SendCommand() @endverbatim * @{ */ /** @addtogroup FMC_LL_SDRAM_Private_Functions_Group1 * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### Initialization and de_initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the FMC SDRAM interface (+) De-initialize the FMC SDRAM interface (+) Configure the FMC clock and associated GPIOs @endverbatim * @{ */ /** * @brief Initializes the FMC_SDRAM device according to the specified * control parameters in the FMC_SDRAM_InitTypeDef * @param Device: Pointer to SDRAM device instance * @param Init: Pointer to SDRAM Initialization structure * @retval HAL status */ HAL_StatusTypeDef FMC_SDRAM_Init(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_InitTypeDef *Init) { uint32_t tmpr1 = 0U; uint32_t tmpr2 = 0U; /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_SDRAM_BANK(Init->SDBank)); assert_param(IS_FMC_COLUMNBITS_NUMBER(Init->ColumnBitsNumber)); assert_param(IS_FMC_ROWBITS_NUMBER(Init->RowBitsNumber)); assert_param(IS_FMC_SDMEMORY_WIDTH(Init->MemoryDataWidth)); assert_param(IS_FMC_INTERNALBANK_NUMBER(Init->InternalBankNumber)); assert_param(IS_FMC_CAS_LATENCY(Init->CASLatency)); assert_param(IS_FMC_WRITE_PROTECTION(Init->WriteProtection)); assert_param(IS_FMC_SDCLOCK_PERIOD(Init->SDClockPeriod)); assert_param(IS_FMC_READ_BURST(Init->ReadBurst)); assert_param(IS_FMC_READPIPE_DELAY(Init->ReadPipeDelay)); /* Set SDRAM bank configuration parameters */ if (Init->SDBank != FMC_SDRAM_BANK2) { tmpr1 = Device->SDCR[FMC_SDRAM_BANK1]; /* Clear NC, NR, MWID, NB, CAS, WP, SDCLK, RBURST, and RPIPE bits */ tmpr1 &= ((uint32_t)~(FMC_SDCR1_NC | FMC_SDCR1_NR | FMC_SDCR1_MWID | \ FMC_SDCR1_NB | FMC_SDCR1_CAS | FMC_SDCR1_WP | \ FMC_SDCR1_SDCLK | FMC_SDCR1_RBURST | FMC_SDCR1_RPIPE)); tmpr1 |= (uint32_t)(Init->ColumnBitsNumber |\ Init->RowBitsNumber |\ Init->MemoryDataWidth |\ Init->InternalBankNumber |\ Init->CASLatency |\ Init->WriteProtection |\ Init->SDClockPeriod |\ Init->ReadBurst |\ Init->ReadPipeDelay ); Device->SDCR[FMC_SDRAM_BANK1] = tmpr1; } else /* FMC_Bank2_SDRAM */ { /////////////////////////////// // BEGIN PIECE OF WEIRD CODE // /////////////////////////////// // // tmpr1 = Device->SDCR[FMC_SDRAM_BANK1]; // // /* Clear NC, NR, MWID, NB, CAS, WP, SDCLK, RBURST, and RPIPE bits */ // tmpr1 &= ((uint32_t)~(FMC_SDCR1_NC | FMC_SDCR1_NR | FMC_SDCR1_MWID | \ // FMC_SDCR1_NB | FMC_SDCR1_CAS | FMC_SDCR1_WP | \ // FMC_SDCR1_SDCLK | FMC_SDCR1_RBURST | FMC_SDCR1_RPIPE)); // // tmpr1 |= (uint32_t)(Init->SDClockPeriod |\ // Init->ReadBurst |\ // Init->ReadPipeDelay); // /////////////////////////////// // END PIECE OF WEIRD CODE // /////////////////////////////// tmpr2 = Device->SDCR[FMC_SDRAM_BANK1]; /* Clear NC, NR, MWID, NB, CAS, WP, SDCLK, RBURST, and RPIPE bits */ tmpr2 &= ((uint32_t)~(FMC_SDCR2_NC | FMC_SDCR2_NR | FMC_SDCR2_MWID | \ FMC_SDCR2_NB | FMC_SDCR2_CAS | FMC_SDCR2_WP | \ FMC_SDCR2_SDCLK | FMC_SDCR2_RBURST | FMC_SDCR2_RPIPE)); tmpr2 |= (uint32_t)(Init->ColumnBitsNumber |\ Init->RowBitsNumber |\ Init->MemoryDataWidth |\ Init->InternalBankNumber |\ Init->CASLatency |\ Init->WriteProtection); // // Device->SDCR[FMC_SDRAM_BANK1] = tmpr1; // Device->SDCR[FMC_SDRAM_BANK2] = tmpr2; } return HAL_OK; } /** * @brief Initializes the FMC_SDRAM device timing according to the specified * parameters in the FMC_SDRAM_TimingTypeDef * @param Device: Pointer to SDRAM device instance * @param Timing: Pointer to SDRAM Timing structure * @param Bank: SDRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_SDRAM_Timing_Init(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_TimingTypeDef *Timing, uint32_t Bank) { uint32_t tmpr1 = 0U; uint32_t tmpr2 = 0U; /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_LOADTOACTIVE_DELAY(Timing->LoadToActiveDelay)); assert_param(IS_FMC_EXITSELFREFRESH_DELAY(Timing->ExitSelfRefreshDelay)); assert_param(IS_FMC_SELFREFRESH_TIME(Timing->SelfRefreshTime)); assert_param(IS_FMC_ROWCYCLE_DELAY(Timing->RowCycleDelay)); assert_param(IS_FMC_WRITE_RECOVERY_TIME(Timing->WriteRecoveryTime)); assert_param(IS_FMC_RP_DELAY(Timing->RPDelay)); assert_param(IS_FMC_RCD_DELAY(Timing->RCDDelay)); assert_param(IS_FMC_SDRAM_BANK(Bank)); /* Set SDRAM device timing parameters */ if (Bank != FMC_SDRAM_BANK2) { tmpr1 = Device->SDTR[FMC_SDRAM_BANK1]; /* Clear TMRD, TXSR, TRAS, TRC, TWR, TRP and TRCD bits */ tmpr1 &= ((uint32_t)~(FMC_SDTR1_TMRD | FMC_SDTR1_TXSR | FMC_SDTR1_TRAS | \ FMC_SDTR1_TRC | FMC_SDTR1_TWR | FMC_SDTR1_TRP | \ FMC_SDTR1_TRCD)); tmpr1 |= (uint32_t)(((Timing->LoadToActiveDelay)-1U) |\ (((Timing->ExitSelfRefreshDelay)-1U) << 4U) |\ (((Timing->SelfRefreshTime)-1U) << 8U) |\ (((Timing->RowCycleDelay)-1U) << 12U) |\ (((Timing->WriteRecoveryTime)-1U) <<16U) |\ (((Timing->RPDelay)-1U) << 20U) |\ (((Timing->RCDDelay)-1U) << 24U)); Device->SDTR[FMC_SDRAM_BANK1] = tmpr1; } else /* FMC_Bank2_SDRAM */ { /////////////////////////////// // BEGIN PIECE OF WEIRD CODE // /////////////////////////////// // // tmpr1 = Device->SDTR[FMC_SDRAM_BANK2]; // // /* Clear TMRD, TXSR, TRAS, TRC, TWR, TRP and TRCD bits */ // tmpr1 &= ((uint32_t)~(FMC_SDTR1_TMRD | FMC_SDTR1_TXSR | FMC_SDTR1_TRAS | \ // FMC_SDTR1_TRC | FMC_SDTR1_TWR | FMC_SDTR1_TRP | \ // FMC_SDTR1_TRCD)); // // tmpr1 |= (uint32_t)(((Timing->LoadToActiveDelay)-1U) |\ // (((Timing->ExitSelfRefreshDelay)-1U) << 4U) |\ // (((Timing->SelfRefreshTime)-1U) << 8U) |\ // (((Timing->WriteRecoveryTime)-1U) <<16U) |\ // (((Timing->RCDDelay)-1U) << 24U)); // /////////////////////////////// // END PIECE OF WEIRD CODE // /////////////////////////////// tmpr2 = Device->SDTR[FMC_SDRAM_BANK1]; /* Clear TMRD, TXSR, TRAS, TRC, TWR, TRP and TRCD bits */ tmpr2 &= ((uint32_t)~(FMC_SDTR2_TMRD | FMC_SDTR2_TXSR | FMC_SDTR2_TRAS | \ FMC_SDTR2_TRC | FMC_SDTR2_TWR | FMC_SDTR2_TRP | \ FMC_SDTR2_TRCD)); tmpr2 |= (uint32_t)(((Timing->LoadToActiveDelay)-1U) |\ (((Timing->ExitSelfRefreshDelay)-1U) << 4U) |\ (((Timing->SelfRefreshTime)-1U) << 8U) |\ (((Timing->WriteRecoveryTime)-1U) <<16U) |\ (((Timing->RCDDelay)-1U) << 24U)); // // Device->SDTR[FMC_SDRAM_BANK2] = tmpr1; // Device->SDTR[FMC_SDRAM_BANK2] = tmpr2; } return HAL_OK; } /** * @brief DeInitializes the FMC_SDRAM peripheral * @param Device: Pointer to SDRAM device instance * @retval HAL status */ HAL_StatusTypeDef FMC_SDRAM_DeInit(FMC_SDRAM_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_SDRAM_BANK(Bank)); /* De-initialize the SDRAM device */ Device->SDCR[Bank] = 0x000002D0U; Device->SDTR[Bank] = 0x0FFFFFFFU; Device->SDCMR = 0x00000000U; Device->SDRTR = 0x00000000U; Device->SDSR = 0x00000000U; return HAL_OK; } /** * @} */ /** @addtogroup FMC_LL_SDRAMPrivate_Functions_Group2 * @brief management functions * @verbatim ============================================================================== ##### FMC_SDRAM Control functions ##### ============================================================================== [..] This subsection provides a set of functions allowing to control dynamically the FMC SDRAM interface. @endverbatim * @{ */ /** * @brief Enables dynamically FMC_SDRAM write protection. * @param Device: Pointer to SDRAM device instance * @param Bank: SDRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_SDRAM_WriteProtection_Enable(FMC_SDRAM_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_SDRAM_BANK(Bank)); /* Enable write protection */ Device->SDCR[Bank] |= FMC_SDRAM_WRITE_PROTECTION_ENABLE; return HAL_OK; } /** * @brief Disables dynamically FMC_SDRAM write protection. * @param hsdram: FMC_SDRAM handle * @retval HAL status */ HAL_StatusTypeDef FMC_SDRAM_WriteProtection_Disable(FMC_SDRAM_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_SDRAM_BANK(Bank)); /* Disable write protection */ Device->SDCR[Bank] &= ~FMC_SDRAM_WRITE_PROTECTION_ENABLE; return HAL_OK; } /** * @brief Send Command to the FMC SDRAM bank * @param Device: Pointer to SDRAM device instance * @param Command: Pointer to SDRAM command structure * @param Timing: Pointer to SDRAM Timing structure * @param Timeout: Timeout wait value * @retval HAL state */ HAL_StatusTypeDef FMC_SDRAM_SendCommand(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_CommandTypeDef *Command, uint32_t Timeout) { __IO uint32_t tmpr = 0U; uint32_t tickstart = 0U; /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_COMMAND_MODE(Command->CommandMode)); assert_param(IS_FMC_COMMAND_TARGET(Command->CommandTarget)); assert_param(IS_FMC_AUTOREFRESH_NUMBER(Command->AutoRefreshNumber)); assert_param(IS_FMC_MODE_REGISTER(Command->ModeRegisterDefinition)); /* Set command register */ tmpr = (uint32_t)((Command->CommandMode) |\ (Command->CommandTarget) |\ (((Command->AutoRefreshNumber)-1U) << 5U) |\ ((Command->ModeRegisterDefinition) << 9U) ); Device->SDCMR = tmpr; /* Get tick */ tickstart = HAL_GetTick(); /* Wait until command is send */ while(HAL_IS_BIT_SET(Device->SDSR, FMC_SDSR_BUSY)) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) { return HAL_TIMEOUT; } } } return HAL_OK; } /** * @brief Program the SDRAM Memory Refresh rate. * @param Device: Pointer to SDRAM device instance * @param RefreshRate: The SDRAM refresh rate value. * @retval HAL state */ HAL_StatusTypeDef FMC_SDRAM_ProgramRefreshRate(FMC_SDRAM_TypeDef *Device, uint32_t RefreshRate) { /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_REFRESH_RATE(RefreshRate)); /* Set the refresh rate in command register */ Device->SDRTR |= (RefreshRate<<1U); return HAL_OK; } /** * @brief Set the Number of consecutive SDRAM Memory auto Refresh commands. * @param Device: Pointer to SDRAM device instance * @param AutoRefreshNumber: Specifies the auto Refresh number. * @retval None */ HAL_StatusTypeDef FMC_SDRAM_SetAutoRefreshNumber(FMC_SDRAM_TypeDef *Device, uint32_t AutoRefreshNumber) { /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_AUTOREFRESH_NUMBER(AutoRefreshNumber)); /* Set the Auto-refresh number in command register */ Device->SDCMR |= (AutoRefreshNumber << 5U); return HAL_OK; } /** * @brief Returns the indicated FMC SDRAM bank mode status. * @param Device: Pointer to SDRAM device instance * @param Bank: Defines the FMC SDRAM bank. This parameter can be * FMC_Bank1_SDRAM or FMC_Bank2_SDRAM. * @retval The FMC SDRAM bank mode status, could be on of the following values: * FMC_SDRAM_NORMAL_MODE, FMC_SDRAM_SELF_REFRESH_MODE or * FMC_SDRAM_POWER_DOWN_MODE. */ uint32_t FMC_SDRAM_GetModeStatus(FMC_SDRAM_TypeDef *Device, uint32_t Bank) { uint32_t tmpreg = 0U; /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_SDRAM_BANK(Bank)); /* Get the corresponding bank mode */ if(Bank == FMC_SDRAM_BANK1) { tmpreg = (uint32_t)(Device->SDSR & FMC_SDSR_MODES1); } else { tmpreg = ((uint32_t)(Device->SDSR & FMC_SDSR_MODES2) >> 2U); } /* Return the mode status */ return tmpreg; } /** * @} */ /** * @} */ /** * @} */ #endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx || STM32F469xx || STM32F479xx */ #endif /* HAL_SRAM_MODULE_ENABLED || HAL_NOR_MODULE_ENABLED || HAL_NAND_MODULE_ENABLED || HAL_PCCARD_MODULE_ENABLED || HAL_SDRAM_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/