`timescale 1ns / 1ps module novena_fmc_top ( input wire gclk_p_pin, input wire gclk_n_pin, input wire reset_mcu_b_pin, input wire fmc_clk, // clock input wire [21: 0] fmc_a, // address inout wire [31: 0] fmc_d, // data input wire fmc_ne1, // chip select input wire fmc_noe, // output enable input wire fmc_nwe, // write enable input wire fmc_nl, // latch enable output wire fmc_nwait, // wait output wire apoptosis_pin, output wire led_pin ); // // Clock Manager // wire sys_clk; wire sys_rst; novena_clkmgr_new # ( .CLK_OUT_MUL (2), // 2..32 .CLK_OUT_DIV (2) // 1..32 ) clkmgr ( .gclk_p (gclk_p_pin), .gclk_n (gclk_n_pin), .reset_mcu_b (reset_mcu_b_pin), .sys_clk (sys_clk), .sys_rst (sys_rst) ); // // BUFG // wire fmc_clk_bug; BUFG BUFG_fmc_clk ( .I (fmc_clk), .O (fmc_clk_bufg) ); //---------------------------------------------------------------- // FMC Arbiter // // FMC arbiter handles FMC access and transfers it into // `sys_clk' clock domain. //---------------------------------------------------------------- wire [21: 0] sys_fmc_addr; // address wire sys_fmc_wren; // write enable wire sys_fmc_rden; // read enable wire [31: 0] sys_fmc_dout; // data output (from STM32 to FPGA) reg [31: 0] sys_fmc_din; // data input (from FPGA to STM32) fmc_arbiter # ( .NUM_ADDR_BITS(22) // change to 26 when ) fmc ( .fmc_clk(fmc_clk_bufg), .fmc_a(fmc_a), .fmc_d(fmc_d), .fmc_ne1(fmc_ne1), .fmc_nl(fmc_nl), .fmc_nwe(fmc_nwe), .fmc_noe(fmc_noe), .fmc_nwait(fmc_nwait), .sys_clk(sys_clk), .sys_addr(sys_fmc_addr), .sys_wr_en(sys_fmc_wren), .sys_rd_en(sys_fmc_rden), .sys_data_out(sys_fmc_dout), .sys_data_in(sys_fmc_din) ); //---------------------------------------------------------------- // Dummy Register // // General-purpose register to test FMC interface using STM32 // demo program instead of core selector logic. // // This register is a bit tricky, but it allows testing of both // data and address buses. Reading from FPGA will always return // value, which is currently stored in the test register, // regardless of read transaction address. Writing to FPGA has // two variants: a) writing to address 0 will store output data // data value in the test register, b) writing to any non-zero // address will store _address_ of write transaction in the test // register. // // To test data bus, write some different patterns to address 0, // then readback from any address and compare. // // To test address bus, write anything to some different non-zero // addresses, then readback from any address and compare returned // value with previously written address. // //---------------------------------------------------------------- reg [31: 0] test_reg; always @(posedge sys_clk) // if (sys_fmc_wren) begin // // when writing to address 0, store input data value // // when writing to non-zero address, store _address_ // (padded with zeroes) instead of data // test_reg <= (sys_fmc_addr == {22{1'b0}}) ? sys_fmc_dout : {{10{1'b0}}, sys_fmc_addr}; // end else if (sys_fmc_rden) begin // // always return current value, ignore address // sys_fmc_din <= test_reg; // end //---------------------------------------------------------------- // LED Driver // // A simple utility LED driver that turns on the Novena // board LED when the FMC interface is active. //---------------------------------------------------------------- fmc_indicator led ( .sys_clk(sys_clk), .sys_rst(sys_rst), .fmc_active(sys_fmc_wren | sys_fmc_rden), .led_out(led_pin) ); //---------------------------------------------------------------- // Novena Patch // // Patch logic to keep the Novena board happy. // The apoptosis_pin pin must be kept low or the whole board // (more exactly the CPU) will be reset after the FPGA has // been configured. //---------------------------------------------------------------- assign apoptosis_pin = 1'b0; endmodule